summaryrefslogtreecommitdiffstats
path: root/alsa/sbc.c
diff options
context:
space:
mode:
authorMarcel Holtmann <marcel@holtmann.org>2005-02-10 21:02:07 +0000
committerMarcel Holtmann <marcel@holtmann.org>2005-02-10 21:02:07 +0000
commit490afac7bc8ca6b283499fe5b026a14a7f7df0cb (patch)
treee4c58b785fd904924661bcb789b59859ecabf8f6 /alsa/sbc.c
parent77f2ea7f02d5981deab6ec22d05570e06d46836e (diff)
Add SBC library support
Diffstat (limited to 'alsa/sbc.c')
-rw-r--r--alsa/sbc.c1355
1 files changed, 1355 insertions, 0 deletions
diff --git a/alsa/sbc.c b/alsa/sbc.c
new file mode 100644
index 00000000..bd767768
--- /dev/null
+++ b/alsa/sbc.c
@@ -0,0 +1,1355 @@
+/*
+ *
+ * Bluetooth low-complexity, subband codec (SBC) library
+ *
+ * Copyright (C) 2004-2005 Marcel Holtmann <marcel@holtmann.org>
+ * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
+ *
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include <errno.h>
+#include <malloc.h>
+#include <string.h>
+#include <sys/types.h>
+
+#include "sbc.h"
+
+/* A2DP specification: Appendix B, page 69 */
+static const int sbc_offset4[4][4] = {
+ { -1, 0, 0, 0 },
+ { -2, 0, 0, 1 },
+ { -2, 0, 0, 1 },
+ { -2, 0, 0, 1 }
+};
+
+/* A2DP specification: Appendix B, page 69 */
+static const int sbc_offset8[4][8] = {
+ { -2, 0, 0, 0, 0, 0, 0, 1 },
+ { -3, 0, 0, 0, 0, 0, 1, 2 },
+ { -4, 0, 0, 0, 0, 0, 1, 2 },
+ { -4, 0, 0, 0, 0, 0, 1, 2 }
+};
+
+/* A2DP specification: Appendix B, page 70 */
+static const float sbc_proto_4_40[40] = {
+ 0.00000000E+00, 5.36548976E-04, 1.49188357E-03, 2.73370904E-03,
+ 3.83720193E-03, 3.89205149E-03, 1.86581691E-03, -3.06012286E-03,
+ 1.09137620E-02, 2.04385087E-02, 2.88757392E-02, 3.21939290E-02,
+ 2.58767811E-02, 6.13245186E-03, -2.88217274E-02, -7.76463494E-02,
+ 1.35593274E-01, 1.94987841E-01, 2.46636662E-01, 2.81828203E-01,
+ 2.94315332E-01, 2.81828203E-01, 2.46636662E-01, 1.94987841E-01,
+ -1.35593274E-01, -7.76463494E-02, -2.88217274E-02, 6.13245186E-03,
+ 2.58767811E-02, 3.21939290E-02, 2.88757392E-02, 2.04385087E-02,
+ -1.09137620E-02, -3.06012286E-03, 1.86581691E-03, 3.89205149E-03,
+ 3.83720193E-03, 2.73370904E-03, 1.49188357E-03, 5.36548976E-04
+};
+
+/* A2DP specification: Appendix B, page 70 */
+static const float sbc_proto_8_80[80] = {
+ 0.00000000E+00, 1.56575398E-04, 3.43256425E-04, 5.54620202E-04,
+ 8.23919506E-04, 1.13992507E-03, 1.47640169E-03, 1.78371725E-03,
+ 2.01182542E-03, 2.10371989E-03, 1.99454554E-03, 1.61656283E-03,
+ 9.02154502E-04, -1.78805361E-04, -1.64973098E-03, -3.49717454E-03,
+ 5.65949473E-03, 8.02941163E-03, 1.04584443E-02, 1.27472335E-02,
+ 1.46525263E-02, 1.59045603E-02, 1.62208471E-02, 1.53184106E-02,
+ 1.29371806E-02, 8.85757540E-03, 2.92408442E-03, -4.91578024E-03,
+ -1.46404076E-02, -2.61098752E-02, -3.90751381E-02, -5.31873032E-02,
+ 6.79989431E-02, 8.29847578E-02, 9.75753918E-02, 1.11196689E-01,
+ 1.23264548E-01, 1.33264415E-01, 1.40753505E-01, 1.45389847E-01,
+ 1.46955068E-01, 1.45389847E-01, 1.40753505E-01, 1.33264415E-01,
+ 1.23264548E-01, 1.11196689E-01, 9.75753918E-02, 8.29847578E-02,
+ -6.79989431E-02, -5.31873032E-02, -3.90751381E-02, -2.61098752E-02,
+ -1.46404076E-02, -4.91578024E-03, 2.92408442E-03, 8.85757540E-03,
+ 1.29371806E-02, 1.53184106E-02, 1.62208471E-02, 1.59045603E-02,
+ 1.46525263E-02, 1.27472335E-02, 1.04584443E-02, 8.02941163E-03,
+ -5.65949473E-03, -3.49717454E-03, -1.64973098E-03, -1.78805361E-04,
+ 9.02154502E-04, 1.61656283E-03, 1.99454554E-03, 2.10371989E-03,
+ 2.01182542E-03, 1.78371725E-03, 1.47640169E-03, 1.13992507E-03,
+ 8.23919506E-04, 5.54620202E-04, 3.43256425E-04, 1.56575398E-04
+};
+
+/* Precomputed: synmatrix4[k][i] = cos( (i+0.5) * (k+2.0) * pi/4.0 ) */
+static const float synmatrix4[8][4] = {
+ { 0.707106781186548, -0.707106781186547, -0.707106781186548, 0.707106781186547 },
+ { 0.38268343236509, -0.923879532511287, 0.923879532511287, -0.38268343236509 },
+ { 0, 0, 0, 0 },
+ { -0.38268343236509, 0.923879532511287, -0.923879532511287, 0.382683432365091 },
+ { -0.707106781186547, 0.707106781186548, 0.707106781186547, -0.707106781186547 },
+ { -0.923879532511287, -0.38268343236509, 0.382683432365091, 0.923879532511288 },
+ { -1, -1, -1, -1 },
+ { -0.923879532511287, -0.382683432365091, 0.38268343236509, 0.923879532511287 }
+};
+
+/* Precomputed: synmatrix8[k][i] = cos( (i+0.5) * (k+4.0) * pi/8.0 ) */
+static const float synmatrix8[16][8] = {
+ { 0.707106781186548, -0.707106781186547, -0.707106781186548, 0.707106781186547,
+ 0.707106781186548, -0.707106781186547, -0.707106781186547, 0.707106781186547 },
+ { 0.555570233019602, -0.98078528040323, 0.195090322016128, 0.831469612302545,
+ -0.831469612302545, -0.195090322016128, 0.980785280403231, -0.555570233019602 },
+ { 0.38268343236509, -0.923879532511287, 0.923879532511287, -0.38268343236509,
+ -0.382683432365091, 0.923879532511287, -0.923879532511286, 0.38268343236509 },
+ { 0.195090322016128, -0.555570233019602, 0.831469612302545, -0.980785280403231,
+ 0.98078528040323, -0.831469612302545, 0.555570233019602, -0.195090322016129 },
+ { 0, 0, 0, 0,
+ 0, 0, 0, 0 },
+ { -0.195090322016128, 0.555570233019602, -0.831469612302545, 0.98078528040323,
+ -0.980785280403231, 0.831469612302545, -0.555570233019603, 0.19509032201613 },
+ { -0.38268343236509, 0.923879532511287, -0.923879532511287, 0.382683432365091,
+ 0.38268343236509, -0.923879532511287, 0.923879532511288, -0.382683432365091 },
+ { -0.555570233019602, 0.98078528040323, -0.195090322016128, -0.831469612302545,
+ 0.831469612302545, 0.195090322016128, -0.98078528040323, 0.555570233019606 },
+ { -0.707106781186547, 0.707106781186548, 0.707106781186547, -0.707106781186547,
+ -0.707106781186546, 0.707106781186548, 0.707106781186546, -0.707106781186548 },
+ { -0.831469612302545, 0.195090322016129, 0.980785280403231, 0.555570233019602,
+ -0.555570233019603, -0.98078528040323, -0.195090322016128, 0.831469612302547 },
+ { -0.923879532511287, -0.38268343236509, 0.382683432365091, 0.923879532511288,
+ 0.923879532511287, 0.382683432365089, -0.382683432365091, -0.923879532511287 },
+ { -0.98078528040323, -0.831469612302545, -0.555570233019602, -0.195090322016129,
+ 0.19509032201613, 0.555570233019606, 0.831469612302547, 0.980785280403231 },
+ { -1, -1, -1, -1,
+ -1, -1, -1, -1 },
+ { -0.98078528040323, -0.831469612302546, -0.555570233019603, -0.19509032201613,
+ 0.195090322016128, 0.555570233019604, 0.831469612302545, 0.98078528040323 },
+ { -0.923879532511287, -0.382683432365091, 0.38268343236509, 0.923879532511287,
+ 0.923879532511288, 0.382683432365088, -0.382683432365089, -0.923879532511285 },
+ { -0.831469612302545, 0.195090322016127, 0.98078528040323, 0.555570233019603,
+ -0.555570233019601, -0.98078528040323, -0.195090322016131, 0.831469612302545 }
+};
+
+/* Precomputed: anamatrix4[i][k] = cos( (i+0.5) * (k-2) * pi/4 ) */
+static const float anamatrix4[4][8] = {
+ { 0.707106781186548, 0.923879532511287, 1, 0.923879532511287,
+ 0.707106781186548, 0.38268343236509, 0, -0.38268343236509 },
+ { -0.707106781186547, 0.38268343236509, 1, 0.38268343236509,
+ -0.707106781186547, -0.923879532511287, 0, 0.923879532511287 },
+ { -0.707106781186548, -0.38268343236509, 1, -0.38268343236509,
+ -0.707106781186548, 0.923879532511287, 0, -0.923879532511287 },
+ { 0.707106781186547, -0.923879532511287, 1, -0.923879532511287,
+ 0.707106781186547, -0.38268343236509, 0, 0.382683432365091 }
+};
+
+/* Precomputed: anamatrix8[i][k] = cos( (i+0.5) * (k-4) * pi/8) */
+static const float anamatrix8[8][16] = {
+ { 0.923879532511287, 0.98078528040323, 1, 0.98078528040323,
+ 0.923879532511287, 0.831469612302545, 0.707106781186548, 0.555570233019602,
+ 0.38268343236509, 0.195090322016128, 0, -0.195090322016128,
+ -0.38268343236509, -0.555570233019602, -0.707106781186547, -0.831469612302545 },
+ { 0.38268343236509, 0.831469612302545, 1, 0.831469612302545,
+ 0.38268343236509, -0.195090322016128, -0.707106781186547, -0.98078528040323,
+ -0.923879532511287, -0.555570233019602, 0, 0.555570233019602,
+ 0.923879532511287, 0.98078528040323, 0.707106781186548, 0.195090322016129 },
+ { -0.38268343236509, 0.555570233019602, 1, 0.555570233019602,
+ -0.38268343236509, -0.98078528040323, -0.707106781186548, 0.195090322016128,
+ 0.923879532511287, 0.831469612302545, 0, -0.831469612302545,
+ -0.923879532511287, -0.195090322016128, 0.707106781186547, 0.980785280403231 },
+ { -0.923879532511287, 0.195090322016128, 1, 0.195090322016128,
+ -0.923879532511287, -0.555570233019602, 0.707106781186547, 0.831469612302545,
+ -0.38268343236509, -0.980785280403231, 0, 0.98078528040323,
+ 0.382683432365091, -0.831469612302545, -0.707106781186547, 0.555570233019602 },
+ { -0.923879532511287, -0.195090322016128, 1, -0.195090322016128,
+ -0.923879532511287, 0.555570233019602, 0.707106781186548, -0.831469612302545,
+ -0.382683432365091, 0.98078528040323, 0, -0.980785280403231,
+ 0.38268343236509, 0.831469612302545, -0.707106781186546, -0.555570233019603 },
+ { -0.38268343236509, -0.555570233019602, 1, -0.555570233019602,
+ -0.38268343236509, 0.98078528040323, -0.707106781186547, -0.195090322016128,
+ 0.923879532511287, -0.831469612302545, 0, 0.831469612302545,
+ -0.923879532511287, 0.195090322016128, 0.707106781186548, -0.98078528040323 },
+ { 0.38268343236509, -0.831469612302545, 1, -0.831469612302545,
+ 0.38268343236509, 0.195090322016129, -0.707106781186547, 0.980785280403231,
+ -0.923879532511286, 0.555570233019602, 0, -0.555570233019603,
+ 0.923879532511288, -0.98078528040323, 0.707106781186546, -0.195090322016128 },
+ { 0.923879532511287, -0.98078528040323, 1, -0.98078528040323,
+ 0.923879532511287, -0.831469612302545, 0.707106781186547, -0.555570233019602,
+ 0.38268343236509, -0.195090322016129, 0, 0.19509032201613,
+ -0.382683432365091, 0.555570233019606, -0.707106781186548, 0.831469612302547 }
+};
+
+#define fabs(x) ((x) < 0 ? (-x) : (x))
+
+#define SBC_SYNCWORD 0x9C
+
+/* sampling frequency */
+#define SBC_FS_16 0x00
+#define SBC_FS_32 0x01
+#define SBC_FS_44 0x02
+#define SBC_FS_48 0x03
+
+/* nrof_blocks */
+#define SBC_NB_4 0x00
+#define SBC_NB_8 0x01
+#define SBC_NB_12 0x02
+#define SBC_NB_16 0x03
+
+/* channel mode */
+#define SBC_CM_MONO 0x00
+#define SBC_CM_DUAL_CHANNEL 0x01
+#define SBC_CM_STEREO 0x02
+#define SBC_CM_JOINT_STEREO 0x03
+
+/* allocation mode */
+#define SBC_AM_LOUDNESS 0x00
+#define SBC_AM_SNR 0x01
+
+/* subbands */
+#define SBC_SB_4 0x00
+#define SBC_SB_8 0x01
+
+/* This structure contains an unpacked SBC frame.
+ Yes, there is probably quite some unused space herein */
+struct sbc_frame {
+ double sampling_frequency; /* in kHz */
+ u_int8_t blocks;
+ enum {
+ MONO = SBC_CM_MONO,
+ DUAL_CHANNEL = SBC_CM_DUAL_CHANNEL,
+ STEREO = SBC_CM_STEREO,
+ JOINT_STEREO = SBC_CM_JOINT_STEREO
+ } channel_mode;
+ u_int8_t channels;
+ enum {
+ LOUDNESS = SBC_AM_LOUDNESS,
+ SNR = SBC_AM_SNR
+ } allocation_method;
+ u_int8_t subbands;
+ u_int8_t bitpool;
+ u_int8_t join; /* bit number x set means joint stereo has been used in subband x */
+ u_int8_t scale_factor[2][8]; /* only the lower 4 bits of every element are to be used */
+ u_int16_t audio_sample[16][2][8]; /* raw integer subband samples in the frame */
+ double sb_sample[16][2][8]; /* modified subband samples */
+ double pcm_sample[2][16*8]; /* original pcm audio samples */
+};
+
+struct sbc_decoder_state {
+ int subbands;
+ float S[2][8]; /* Subband samples */
+ float X[2][8]; /* Audio samples */
+ float V[2][160], U[2][80], W[2][80]; /* Vectors */
+};
+
+struct sbc_encoder_state {
+ int subbands;
+ float S[2][8]; /* Subband samples */
+ float X[2][80], Y[2][16], Z[2][80]; /* Vectors */
+};
+
+/*
+ * Calculates the CRC-8 of the first len bits in data
+ */
+static const u_int8_t crc_table[256] = {
+ 0x00, 0x1D, 0x3A, 0x27, 0x74, 0x69, 0x4E, 0x53,
+ 0xE8, 0xF5, 0xD2, 0xCF, 0x9C, 0x81, 0xA6, 0xBB,
+ 0xCD, 0xD0, 0xF7, 0xEA, 0xB9, 0xA4, 0x83, 0x9E,
+ 0x25, 0x38, 0x1F, 0x02, 0x51, 0x4C, 0x6B, 0x76,
+ 0x87, 0x9A, 0xBD, 0xA0, 0xF3, 0xEE, 0xC9, 0xD4,
+ 0x6F, 0x72, 0x55, 0x48, 0x1B, 0x06, 0x21, 0x3C,
+ 0x4A, 0x57, 0x70, 0x6D, 0x3E, 0x23, 0x04, 0x19,
+ 0xA2, 0xBF, 0x98, 0x85, 0xD6, 0xCB, 0xEC, 0xF1,
+ 0x13, 0x0E, 0x29, 0x34, 0x67, 0x7A, 0x5D, 0x40,
+ 0xFB, 0xE6, 0xC1, 0xDC, 0x8F, 0x92, 0xB5, 0xA8,
+ 0xDE, 0xC3, 0xE4, 0xF9, 0xAA, 0xB7, 0x90, 0x8D,
+ 0x36, 0x2B, 0x0C, 0x11, 0x42, 0x5F, 0x78, 0x65,
+ 0x94, 0x89, 0xAE, 0xB3, 0xE0, 0xFD, 0xDA, 0xC7,
+ 0x7C, 0x61, 0x46, 0x5B, 0x08, 0x15, 0x32, 0x2F,
+ 0x59, 0x44, 0x63, 0x7E, 0x2D, 0x30, 0x17, 0x0A,
+ 0xB1, 0xAC, 0x8B, 0x96, 0xC5, 0xD8, 0xFF, 0xE2,
+ 0x26, 0x3B, 0x1C, 0x01, 0x52, 0x4F, 0x68, 0x75,
+ 0xCE, 0xD3, 0xF4, 0xE9, 0xBA, 0xA7, 0x80, 0x9D,
+ 0xEB, 0xF6, 0xD1, 0xCC, 0x9F, 0x82, 0xA5, 0xB8,
+ 0x03, 0x1E, 0x39, 0x24, 0x77, 0x6A, 0x4D, 0x50,
+ 0xA1, 0xBC, 0x9B, 0x86, 0xD5, 0xC8, 0xEF, 0xF2,
+ 0x49, 0x54, 0x73, 0x6E, 0x3D, 0x20, 0x07, 0x1A,
+ 0x6C, 0x71, 0x56, 0x4B, 0x18, 0x05, 0x22, 0x3F,
+ 0x84, 0x99, 0xBE, 0xA3, 0xF0, 0xED, 0xCA, 0xD7,
+ 0x35, 0x28, 0x0F, 0x12, 0x41, 0x5C, 0x7B, 0x66,
+ 0xDD, 0xC0, 0xE7, 0xFA, 0xA9, 0xB4, 0x93, 0x8E,
+ 0xF8, 0xE5, 0xC2, 0xDF, 0x8C, 0x91, 0xB6, 0xAB,
+ 0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43,
+ 0xB2, 0xAF, 0x88, 0x95, 0xC6, 0xDB, 0xFC, 0xE1,
+ 0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09,
+ 0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C,
+ 0x97, 0x8A, 0xAD, 0xB0, 0xE3, 0xFE, 0xD9, 0xC4
+};
+
+static u_int8_t sbc_crc8(const u_int8_t * data, size_t len)
+{
+ u_int8_t crc = 0x0f;
+ size_t i;
+ u_int8_t octet;
+
+ for (i = 0; i < len / 8; i++)
+ crc = crc_table[crc ^ data[i]];
+
+ octet = data[i];
+ for (i = 0; i < len % 8; i++) {
+ char bit = ((octet ^ crc) & 0x80) >> 7;
+
+ crc = ((crc & 0x7f) << 1) ^ (bit ? 0x1d : 0);
+
+ octet = octet << 1;
+ }
+
+ return crc;
+}
+
+/*
+ * Code straight from the spec to calculate the bits array
+ * Takes a pointer to the frame in question, a pointer to the bits array and the sampling frequency (as 2 bit integer)
+ */
+static void sbc_calculate_bits(const struct sbc_frame *frame, int (*bits)[8], u_int8_t sf)
+{
+ if (frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL) {
+ int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice;
+ int ch, sb;
+
+ for (ch = 0; ch < frame->channels; ch++) {
+ if (frame->allocation_method == SNR) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ bitneed[ch][sb] = frame->scale_factor[ch][sb];
+ }
+ } else {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (frame->scale_factor[ch][sb] == 0) {
+ bitneed[ch][sb] = -5;
+ } else {
+ if (frame->subbands == 4) {
+ loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb];
+ } else {
+ loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb];
+ }
+ if (loudness > 0) {
+ bitneed[ch][sb] = loudness / 2;
+ } else {
+ bitneed[ch][sb] = loudness;
+ }
+ }
+ }
+ }
+
+ max_bitneed = 0;
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (bitneed[ch][sb] > max_bitneed)
+ max_bitneed = bitneed[ch][sb];
+ }
+
+ bitcount = 0;
+ slicecount = 0;
+ bitslice = max_bitneed + 1;
+ do {
+ bitslice--;
+ bitcount += slicecount;
+ slicecount = 0;
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16)) {
+ slicecount++;
+ } else if (bitneed[ch][sb] == bitslice + 1) {
+ slicecount += 2;
+ }
+ }
+ } while (bitcount + slicecount < frame->bitpool);
+
+ if (bitcount + slicecount == frame->bitpool) {
+ bitcount += slicecount;
+ bitslice--;
+ }
+
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (bitneed[ch][sb] < bitslice + 2) {
+ bits[ch][sb] = 0;
+ } else {
+ bits[ch][sb] = bitneed[ch][sb] - bitslice;
+ if (bits[ch][sb] > 16)
+ bits[ch][sb] = 16;
+ }
+ }
+
+ sb = 0;
+ while (bitcount < frame->bitpool && sb < frame->subbands) {
+ if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) {
+ bits[ch][sb]++;
+ bitcount++;
+ } else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) {
+ bits[ch][sb] = 2;
+ bitcount += 2;
+ }
+ sb++;
+ }
+
+ sb = 0;
+ while (bitcount < frame->bitpool && sb < frame->subbands) {
+ if (bits[ch][sb] < 16) {
+ bits[ch][sb]++;
+ bitcount++;
+ }
+ sb++;
+ }
+
+ }
+
+ } else if (frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO) {
+ int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice;
+ int ch, sb;
+
+ if (frame->allocation_method == SNR) {
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ bitneed[ch][sb] = frame->scale_factor[ch][sb];
+ }
+ }
+ } else {
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (frame->scale_factor[ch][sb] == 0) {
+ bitneed[ch][sb] = -5;
+ } else {
+ if (frame->subbands == 4) {
+ loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb];
+ } else {
+ loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb];
+ }
+ if (loudness > 0) {
+ bitneed[ch][sb] = loudness / 2;
+ } else {
+ bitneed[ch][sb] = loudness;
+ }
+ }
+ }
+ }
+ }
+
+ max_bitneed = 0;
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (bitneed[ch][sb] > max_bitneed)
+ max_bitneed = bitneed[ch][sb];
+ }
+ }
+
+ bitcount = 0;
+ slicecount = 0;
+ bitslice = max_bitneed + 1;
+ do {
+ bitslice--;
+ bitcount += slicecount;
+ slicecount = 0;
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16)) {
+ slicecount++;
+ } else if (bitneed[ch][sb] == bitslice + 1) {
+ slicecount += 2;
+ }
+ }
+ }
+ } while (bitcount + slicecount < frame->bitpool);
+ if (bitcount + slicecount == frame->bitpool) {
+ bitcount += slicecount;
+ bitslice--;
+ }
+
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (bitneed[ch][sb] < bitslice + 2) {
+ bits[ch][sb] = 0;
+ } else {
+ bits[ch][sb] = bitneed[ch][sb] - bitslice;
+ if (bits[ch][sb] > 16)
+ bits[ch][sb] = 16;
+ }
+ }
+ }
+
+ ch = 0;
+ sb = 0;
+ while ((bitcount < frame->bitpool) && (sb < frame->subbands)) {
+ if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) {
+ bits[ch][sb]++;
+ bitcount++;
+ } else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) {
+ bits[ch][sb] = 2;
+ bitcount += 2;
+ }
+ if (ch == 1) {
+ ch = 0;
+ sb++;
+ } else {
+ ch = 1;
+ }
+ }
+
+ ch = 0;
+ sb = 0;
+ while ((bitcount < frame->bitpool) && (sb < frame->subbands)) {
+ if (bits[ch][sb] < 16) {
+ bits[ch][sb]++;
+ bitcount++;
+ }
+ if (ch == 1) {
+ ch = 0;
+ sb++;
+ } else {
+ ch = 1;
+ }
+ }
+
+ }
+
+}
+
+/*
+ * Unpacks a SBC frame at the beginning of the stream in data,
+ * which has at most len bytes into frame.
+ * Returns the length in bytes of the packed frame, or a negative
+ * value on error. The error codes are:
+ *
+ * -1 Data stream too short
+ * -2 Sync byte incorrect
+ * -3 CRC8 incorrect
+ * -4 Bitpool value out of bounds
+ */
+static int sbc_unpack_frame(const u_int8_t * data, struct sbc_frame *frame, size_t len)
+{
+ int consumed;
+ /* Will copy the parts of the header that are relevant to crc calculation here */
+ u_int8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+ int crc_pos = 0;
+
+ u_int8_t sf; /* sampling_frequency, temporarily needed as array index */
+
+ int ch, sb, blk, bit; /* channel, subband, block and bit standard counters */
+ int bits[2][8]; /* bits distribution */
+ int levels[2][8]; /* levels derived from that */
+
+ double scalefactor[2][8]; /* derived from frame->scale_factors */
+
+ if (len < 4) {
+ return -1;
+ }
+
+ if (data[0] != SBC_SYNCWORD) {
+ return -2;
+ }
+
+ sf = (data[1] >> 6) & 0x03;
+ switch (sf) {
+ case SBC_FS_16:
+ frame->sampling_frequency = 16;
+ break;
+ case SBC_FS_32:
+ frame->sampling_frequency = 32;
+ break;
+ case SBC_FS_44:
+ frame->sampling_frequency = 44.1;
+ break;
+ case SBC_FS_48:
+ frame->sampling_frequency = 48;
+ break;
+ }
+
+ switch ((data[1] >> 4) & 0x03) {
+ case SBC_NB_4:
+ frame->blocks = 4;
+ break;
+ case SBC_NB_8:
+ frame->blocks = 8;
+ break;
+ case SBC_NB_12:
+ frame->blocks = 12;
+ break;
+ case SBC_NB_16:
+ frame->blocks = 16;
+ break;
+ }
+
+ frame->channel_mode = (data[1] >> 2) & 0x03;
+ switch (frame->channel_mode) {
+ case MONO:
+ frame->channels = 1;
+ break;
+ case DUAL_CHANNEL: /* fall-through */
+ case STEREO:
+ case JOINT_STEREO:
+ frame->channels = 2;
+ break;
+ }
+
+ frame->allocation_method = (data[1] >> 1) & 0x01;
+
+ frame->subbands = (data[1] & 0x01) ? 8 : 4;
+
+ frame->bitpool = data[2];
+
+ if (((frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL)
+ && frame->bitpool > 16 * frame->subbands)
+ || ((frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO)
+ && frame->bitpool > 32 * frame->subbands)) {
+ return -4;
+ }
+
+ /* data[3] is crc, we're checking it later */
+
+ consumed = 32;
+
+ crc_header[0] = data[1];
+ crc_header[1] = data[2];
+ crc_pos = 16;
+
+ if (frame->channel_mode == JOINT_STEREO) {
+ if (len * 8 < consumed + frame->subbands) {
+ return -1;
+ } else {
+ frame->join = 0x00;
+ for (sb = 0; sb < frame->subbands - 1; sb++) {
+ frame->join |= ((data[4] >> (7 - sb)) & 0x01) << sb;
+ }
+ if (frame->subbands == 4) {
+ crc_header[crc_pos / 8] = data[4] & 0xf0;
+ } else {
+ crc_header[crc_pos / 8] = data[4];
+ }
+
+ consumed += frame->subbands;
+ crc_pos += frame->subbands;
+ }
+ }
+
+ if (len * 8 < consumed + (4 * frame->subbands * frame->channels)) {
+ return -1;
+ } else {
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ /* FIXME assert(consumed % 4 == 0); */
+ frame->scale_factor[ch][sb] = (data[consumed / 8] >> (4 - (consumed % 8))) & 0x0F;
+ crc_header[crc_pos / 8] |= frame->scale_factor[ch][sb] << (4 - (crc_pos % 8));
+
+ consumed += 4;
+ crc_pos += 4;
+ }
+ }
+ }
+
+ if (data[3] != sbc_crc8(crc_header, crc_pos)) {
+ return -3;
+ }
+
+ sbc_calculate_bits(frame, bits, sf);
+
+ for (blk = 0; blk < frame->blocks; blk++) {
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ frame->audio_sample[blk][ch][sb] = 0;
+ if (bits[ch][sb] != 0) {
+ for (bit = 0; bit < bits[ch][sb]; bit++) {
+ int b; /* A bit */
+ if (consumed > len * 8) {
+ return -1;
+ }
+
+ b = (data[consumed / 8] >> (7 - (consumed % 8))) & 0x01;
+ frame->audio_sample[blk][ch][sb] |= b << (bits[ch][sb] - bit - 1);
+
+ consumed++;
+ }
+ }
+ }
+ }
+ }
+
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ levels[ch][sb] = (1 << bits[ch][sb]) - 1;
+ scalefactor[ch][sb] = 2 << frame->scale_factor[ch][sb];
+ }
+ }
+
+ for (blk = 0; blk < frame->blocks; blk++) {
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (levels[ch][sb] > 0) {
+ frame->sb_sample[blk][ch][sb] =
+ scalefactor[ch][sb] * ((frame->audio_sample[blk][ch][sb] * 2.0 + 1.0) /
+ levels[ch][sb] - 1.0);
+ } else {
+ frame->sb_sample[blk][ch][sb] = 0;
+ }
+ }
+ }
+ }
+
+ if (frame->channel_mode == JOINT_STEREO) {
+ for (blk = 0; blk < frame->blocks; blk++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (frame->join & (0x01 << sb)) {
+ frame->sb_sample[blk][0][sb] =
+ frame->sb_sample[blk][0][sb] + frame->sb_sample[blk][1][sb];
+ frame->sb_sample[blk][1][sb] =
+ frame->sb_sample[blk][0][sb] - 2 * frame->sb_sample[blk][1][sb];
+ }
+ }
+ }
+ }
+
+ if (consumed % 8 != 0)
+ consumed += 8 - (consumed % 8);
+
+ return consumed / 8;
+}
+
+static void sbc_decoder_init(struct sbc_decoder_state *state, const struct sbc_frame *frame)
+{
+ memset(&state->S, 0, sizeof(state->S));
+ memset(&state->X, 0, sizeof(state->X));
+ memset(&state->V, 0, sizeof(state->V));
+ memset(&state->U, 0, sizeof(state->U));
+ memset(&state->W, 0, sizeof(state->W));
+ state->subbands = frame->subbands;
+}
+
+static inline void sbc_synthesize_four(struct sbc_decoder_state *state,
+ struct sbc_frame *frame, int ch, int blk)
+{
+ int i, j, k;
+
+ /* Input 4 New Subband Samples */
+ for (i = 0; i < 4; i++)
+ state->S[ch][i] = frame->sb_sample[blk][ch][i];
+
+ /* Shifting */
+ for (i = 79; i >= 8; i--)
+ state->V[ch][i] = state->V[ch][i - 8];
+
+ /* Matrixing */
+ for (k = 0; k < 8; k++) {
+ state->V[ch][k] = 0;
+ for (i = 0; i < 4; i++)
+ state->V[ch][k] += synmatrix4[k][i] * state->S[ch][i];
+ }
+
+ /* Build a 40 values vector U */
+ for (i = 0; i <= 4; i++) {
+ for (j = 0; j < 4; j++) {
+ state->U[ch][i * 8 + j] = state->V[ch][i * 16 + j];
+ state->U[ch][i * 8 + j + 4] = state->V[ch][i * 16 + j + 12];
+ }
+ }
+
+ /* Window by 40 coefficients */
+ for (i = 0; i < 40; i++)
+ state->W[ch][i] = state->U[ch][i] * sbc_proto_4_40[i] * (-4);
+
+ /* Calculate 4 audio samples */
+ for (j = 0; j < 4; j++) {
+ state->X[ch][j] = 0;
+ for (i = 0; i < 10; i++)
+ state->X[ch][j] += state->W[ch][j + 4 * i];
+ }
+
+ /* Output 4 reconstructed Audio Samples */
+ for (i = 0; i < 4; i++)
+ frame->pcm_sample[ch][blk * 4 + i] = state->X[ch][i];
+}
+
+static inline void sbc_synthesize_eight(struct sbc_decoder_state *state,
+ struct sbc_frame *frame, int ch, int blk)
+{
+ int i, j, k;
+
+ /* Input 8 New Subband Samples */
+ for (i = 0; i < 8; i++)
+ state->S[ch][i] = frame->sb_sample[blk][ch][i];
+
+ /* Shifting */
+ for (i = 159; i >= 16; i--)
+ state->V[ch][i] = state->V[ch][i - 16];
+
+ /* Matrixing */
+ for (k = 0; k < 16; k++) {
+ state->V[ch][k] = 0;
+ for (i = 0; i < 8; i++) {
+ state->V[ch][k] += synmatrix8[k][i] * state->S[ch][i];
+ }
+ }
+
+ /* Build a 80 values vector U */
+ for (i = 0; i <= 4; i++) {
+ for (j = 0; j < 8; j++) {
+ state->U[ch][i * 16 + j] = state->V[ch][i * 32 + j];
+ state->U[ch][i * 16 + j + 8] = state->V[ch][i * 32 + j + 24];
+ }
+ }
+
+ /* Window by 80 coefficients */
+ for (i = 0; i < 80; i++)
+ state->W[ch][i] = state->U[ch][i] * sbc_proto_8_80[i] * (-4);
+
+ /* Calculate 8 audio samples */
+ for (j = 0; j < 8; j++) {
+ state->X[ch][j] = 0;
+ for (i = 0; i < 10; i++)
+ state->X[ch][j] += state->W[ch][j + 8 * i];
+ }
+
+ /* Ouput 8 reconstructed Audio Samples */
+ for (i = 0; i < 8; i++)
+ frame->pcm_sample[ch][blk * 8 + i] = state->X[ch][i];
+}
+
+static int sbc_synthesize_audio(struct sbc_decoder_state *state, struct sbc_frame *frame)
+{
+ int ch, blk;
+
+ switch (frame->subbands) {
+ case 4:
+ for (ch = 0; ch < frame->channels; ch++) {
+ memset(frame->pcm_sample[ch], 0,
+ sizeof(frame->pcm_sample[ch]));
+
+ for (blk = 0; blk < frame->blocks; blk++)
+ sbc_synthesize_four(state, frame, ch, blk);
+ }
+
+ return frame->blocks * 4;
+
+ case 8:
+ for (ch = 0; ch < frame->channels; ch++) {
+ memset(frame->pcm_sample[ch], 0,
+ sizeof(frame->pcm_sample[ch]));
+
+ for (blk = 0; blk < frame->blocks; blk++)
+ sbc_synthesize_eight(state, frame, ch, blk);
+ }
+
+ return frame->blocks * 8;
+
+ default:
+ return -EIO;
+ }
+}
+
+static void sbc_encoder_init(struct sbc_encoder_state *state, const struct sbc_frame *frame)
+{
+ memset(&state->S, 0, sizeof(state->S));
+ memset(&state->X, 0, sizeof(state->X));
+ memset(&state->Y, 0, sizeof(state->Y));
+ memset(&state->Z, 0, sizeof(state->Z));
+ state->subbands = frame->subbands;
+}
+
+static inline void sbc_analyze_four(struct sbc_encoder_state *state,
+ struct sbc_frame *frame, int ch, int blk)
+{
+ int i, k;
+
+ /* Input 4 New Audio Samples */
+ for (i = 39; i >= 4; i--)
+ state->X[ch][i] = state->X[ch][i - 4];
+ for (i = 3; i >= 0; i--)
+ state->X[ch][i] = frame->pcm_sample[ch][blk * 4 + (3 - i)];
+
+ /* Windowing by 40 coefficients */
+ for (i = 0; i < 40; i++)
+ state->Z[ch][i] = sbc_proto_4_40[i] * state->X[ch][i];
+
+ /* Partial calculation */
+ for (i = 0; i < 8; i++) {
+ state->Y[ch][i] = 0;
+ for (k = 0; k < 5; k++)
+ state->Y[ch][i] += state->Z[ch][i + k * 8];
+ }
+
+ /* Calculate 4 subband samples by Matrixing */
+ for (i = 0; i < 4; i++) {
+ state->S[ch][i] = 0;
+ for (k = 0; k < 8; k++)
+ state->S[ch][i] += anamatrix4[i][k] * state->Y[ch][k];
+ }
+
+ /* Output 4 Subband Samples */
+ for (i = 0; i < 4; i++)
+ frame->sb_sample[blk][ch][i] = state->S[ch][i];
+}
+
+static inline void sbc_analyze_eight(struct sbc_encoder_state *state,
+ struct sbc_frame *frame, int ch, int blk)
+{
+ int i, k;
+
+ /* Input 8 Audio Samples */
+ for (i = 79; i >= 8; i--)
+ state->X[ch][i] = state->X[ch][i - 8];
+ for (i = 7; i >= 0; i--)
+ state->X[ch][i] = frame->pcm_sample[ch][blk * 8 + (7 - i)];
+
+ /* Windowing by 80 coefficients */
+ for (i = 0; i < 80; i++)
+ state->Z[ch][i] = sbc_proto_8_80[i] * state->X[ch][i];
+
+ /* Partial calculation */
+ for (i = 0; i < 16; i++) {
+ state->Y[ch][i] = 0;
+ for (k = 0; k < 5; k++)
+ state->Y[ch][i] += state->Z[ch][i + k * 16];
+ }
+
+ /* Calculate 8 subband samples by Matrixing */
+ for (i = 0; i < 8; i++) {
+ state->S[ch][i] = 0;
+ for (k = 0; k < 16; k++)
+ state->S[ch][i] += anamatrix8[i][k] * state->Y[ch][k];
+ }
+
+ /* Output 8 Subband Samples */
+ for (i = 0; i < 8; i++)
+ frame->sb_sample[blk][ch][i] = state->S[ch][i];
+}
+
+static int sbc_analyze_audio(struct sbc_encoder_state *state, struct sbc_frame *frame)
+{
+ int ch, blk;
+
+ switch (frame->subbands) {
+ case 4:
+ for (ch = 0; ch < frame->channels; ch++)
+ for (blk = 0; blk < frame->blocks; blk++) {
+ memset(frame->sb_sample[blk][ch], 0,
+ sizeof(frame->sb_sample[blk][ch]));
+ sbc_analyze_four(state, frame, ch, blk);
+ }
+
+ return frame->blocks * 4;
+
+ case 8:
+ for (ch = 0; ch < frame->channels; ch++)
+ for (blk = 0; blk < frame->blocks; blk++) {
+ memset(frame->sb_sample[blk][ch], 0,
+ sizeof(frame->sb_sample[blk][ch]));
+ sbc_analyze_eight(state, frame, ch, blk);
+ }
+
+ return frame->blocks * 8;
+
+ default:
+ return -EIO;
+ }
+}
+
+/*
+ * Packs the SBC frame from frame into the memory at data. At most len
+ * bytes will be used, should more memory be needed an appropriate
+ * error code will be returned. Returns the length of the packed frame
+ * on success or a negative value on error.
+ *
+ * The error codes are:
+ * -1 Not enough memory reserved
+ * -2 Unsupported sampling rate
+ * -3 Unsupported number of blocks
+ * -4 Unsupported number of subbands
+ * -5 Bitpool value out of bounds
+ * -99 not implemented
+ */
+
+static int sbc_pack_frame(u_int8_t * data, struct sbc_frame *frame, size_t len)
+{
+ int produced;
+ /* Will copy the header parts for CRC-8 calculation here */
+ u_int8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+ int crc_pos = 0;
+
+ u_int8_t sf; /* Sampling frequency as temporary value for table lookup */
+
+ int ch, sb, blk, bit; /* channel, subband, block and bit counters */
+ int bits[2][8]; /* bits distribution */
+ int levels[2][8]; /* levels are derived from that */
+
+ double scalefactor[2][8]; /* derived from frame->scale_factor */
+
+ if (len < 4) {
+ return -1;
+ }
+
+ /* Clear first 4 bytes of data (that's the constant length part of the SBC header) */
+ memset(data, 0, 4);
+
+ data[0] = SBC_SYNCWORD;
+
+ if (frame->sampling_frequency == 16) {
+ data[1] |= (SBC_FS_16 & 0x03) << 6;
+ sf = SBC_FS_16;
+ } else if (frame->sampling_frequency == 32) {
+ data[1] |= (SBC_FS_32 & 0x03) << 6;
+ sf = SBC_FS_32;
+ } else if (frame->sampling_frequency == 44.1) {
+ data[1] |= (SBC_FS_44 & 0x03) << 6;
+ sf = SBC_FS_44;
+ } else if (frame->sampling_frequency == 48) {
+ data[1] |= (SBC_FS_48 & 0x03) << 6;
+ sf = SBC_FS_48;
+ } else {
+ return -2;
+ }
+
+ switch (frame->blocks) {
+ case 4:
+ data[1] |= (SBC_NB_4 & 0x03) << 4;
+ break;
+ case 8:
+ data[1] |= (SBC_NB_8 & 0x03) << 4;
+ break;
+ case 12:
+ data[1] |= (SBC_NB_12 & 0x03) << 4;
+ break;
+ case 16:
+ data[1] |= (SBC_NB_16 & 0x03) << 4;
+ break;
+ default:
+ return -3;
+ break;
+ }
+
+ data[1] |= (frame->channel_mode & 0x03) << 2;
+
+ data[1] |= (frame->allocation_method & 0x01) << 1;
+
+ switch (frame->subbands) {
+ case 4:
+ /* Nothing to do */
+ break;
+ case 8:
+ data[1] |= 0x01;
+ break;
+ default:
+ return -4;
+ break;
+ }
+
+ data[2] = frame->bitpool;
+ if (((frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL)
+ && frame->bitpool > 16 * frame->subbands)
+ || ((frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO)
+ && frame->bitpool > 32 * frame->subbands)) {
+ return -5;
+ }
+
+ /* Can't fill in crc yet */
+
+ produced = 32;
+
+ crc_header[0] = data[1];
+ crc_header[1] = data[2];
+ crc_pos = 16;
+
+
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ frame->scale_factor[ch][sb] = 0;
+ scalefactor[ch][sb] = 2;
+ for (blk = 0; blk < frame->blocks; blk++) {
+ while (scalefactor[ch][sb] < fabs(frame->sb_sample[blk][ch][sb])) {
+ frame->scale_factor[ch][sb]++;
+ scalefactor[ch][sb] *= 2;
+ }
+ }
+ }
+ }
+
+ if (frame->channel_mode == JOINT_STEREO) {
+ float sb_sample_j[16][2][7]; /* like frame->sb_sample but joint stereo */
+ int scalefactor_j[2][7], scale_factor_j[2][7]; /* scalefactor and scale_factor in joint case */
+
+ /* Calculate joint stereo signal */
+ for (sb = 0; sb < frame->subbands - 1; sb++) {
+ for (blk = 0; blk < frame->blocks; blk++) {
+ sb_sample_j[blk][0][sb] = (frame->sb_sample[blk][0][sb]
+ + frame->sb_sample[blk][1][sb]) / 2;
+ sb_sample_j[blk][1][sb] = (frame->sb_sample[blk][0][sb]
+ - frame->sb_sample[blk][1][sb]) / 2;
+ }
+ }
+
+ /* calculate scale_factor_j and scalefactor_j for joint case */
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands - 1; sb++) {
+ scale_factor_j[ch][sb] = 0;
+ scalefactor_j[ch][sb] = 2;
+ for (blk = 0; blk < frame->blocks; blk++) {
+ while (scalefactor_j[ch][sb] < fabs(sb_sample_j[blk][ch][sb])) {
+ scale_factor_j[ch][sb]++;
+ scalefactor_j[ch][sb] *= 2;
+ }
+ }
+ }
+ }
+
+ /* decide which subbands to join */
+ frame->join = 0;
+ for (sb = 0; sb < frame->subbands - 1; sb++) {
+ if ( (scalefactor[0][sb] + scalefactor[1][sb]) >
+ (scalefactor_j[0][sb] + scalefactor_j[1][sb]) ) {
+ /* use joint stereo for this subband */
+ frame->join |= 1 << sb;
+ frame->scale_factor[0][sb] = scale_factor_j[0][sb];
+ frame->scale_factor[1][sb] = scale_factor_j[1][sb];
+ scalefactor[0][sb] = scalefactor_j[0][sb];
+ scalefactor[1][sb] = scalefactor_j[1][sb];
+ for (blk = 0; blk < frame->blocks; blk++) {
+ frame->sb_sample[blk][0][sb] = sb_sample_j[blk][0][sb];
+ frame->sb_sample[blk][1][sb] = sb_sample_j[blk][1][sb];
+ }
+ }
+ }
+
+ if (len * 8 < produced + frame->subbands) {
+ return -1;
+ } else {
+ data[4] = 0;
+ for (sb = 0; sb < frame->subbands - 1; sb++) {
+ data[4] |= ((frame->join >> sb) & 0x01) << (7 - sb);
+ }
+ if (frame->subbands == 4) {
+ crc_header[crc_pos / 8] = data[4] & 0xf0;
+ } else {
+ crc_header[crc_pos / 8] = data[4];
+ }
+
+ produced += frame->subbands;
+ crc_pos += frame->subbands;
+ }
+ }
+
+ if (len * 8 < produced + (4 * frame->subbands * frame->channels)) {
+ return -1;
+ } else {
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (produced % 8 == 0)
+ data[produced / 8] = 0;
+ data[produced / 8] |= ((frame->scale_factor[ch][sb] & 0x0F) << (4 - (produced % 8)));
+ crc_header[crc_pos / 8] |=
+ ((frame->scale_factor[ch][sb] & 0x0F) << (4 - (crc_pos % 8)));
+
+ produced += 4;
+ crc_pos += 4;
+ }
+ }
+ }
+
+ data[3] = sbc_crc8(crc_header, crc_pos);
+
+ sbc_calculate_bits(frame, bits, sf);
+
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ levels[ch][sb] = (1 << bits[ch][sb]) - 1;
+ }
+ }
+
+ for (blk = 0; blk < frame->blocks; blk++) {
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (levels[ch][sb] > 0) {
+ frame->audio_sample[blk][ch][sb] =
+ (u_int16_t) (((frame->sb_sample[blk][ch][sb] / scalefactor[ch][sb] +
+ 1.0) * levels[ch][sb]) / 2.0);
+ } else {
+ frame->audio_sample[blk][ch][sb] = 0;
+ }
+ }
+ }
+ }
+
+ for (blk = 0; blk < frame->blocks; blk++) {
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (bits[ch][sb] != 0) {
+ for (bit = 0; bit < bits[ch][sb]; bit++) {
+ int b; /* A bit */
+ if (produced > len * 8) {
+ return -1;
+ }
+ if (produced % 8 == 0) {
+ data[produced / 8] = 0;
+ }
+ b = ((frame->audio_sample[blk][ch][sb]) >> (bits[ch][sb] - bit -
+ 1)) & 0x01;
+ data[produced / 8] |= b << (7 - (produced % 8));
+ produced++;
+ }
+ }
+ }
+ }
+ }
+
+ if (produced % 8 != 0) {
+ produced += 8 - (produced % 8);
+ }
+
+ return produced / 8;
+}
+
+
+struct sbc_priv {
+ int init;
+ struct sbc_frame frame;
+ struct sbc_decoder_state dec_state;
+ struct sbc_encoder_state enc_state;
+};
+
+int sbc_init(sbc_t *sbc, unsigned long flags)
+{
+ if (!sbc)
+ return -EIO;
+
+ memset(sbc, 0, sizeof(sbc_t));
+
+ sbc->priv = malloc(sizeof(struct sbc_priv));
+ if (!sbc->priv)
+ return -ENOMEM;
+
+ memset(sbc->priv, 0, sizeof(struct sbc_priv));
+
+ return 0;
+}
+
+int sbc_decode(sbc_t *sbc, void *data, int count)
+{
+ struct sbc_priv *priv;
+ char *ptr;
+ int i, ch, framelen, samples;
+
+ if (!sbc)
+ return -EIO;
+
+ priv = sbc->priv;
+
+ framelen = sbc_unpack_frame(data, &priv->frame, count);
+
+ if (!priv->init) {
+ sbc_decoder_init(&priv->dec_state, &priv->frame);
+ priv->init = 1;
+
+ sbc->rate = priv->frame.sampling_frequency * 1000;
+ sbc->channels = priv->frame.channels;
+ }
+
+ samples = sbc_synthesize_audio(&priv->dec_state, &priv->frame);
+
+ if (!sbc->data) {
+ sbc->size = samples * priv->frame.channels * 2;
+ sbc->data = malloc(sbc->size);
+ }
+
+ if (sbc->size < samples * priv->frame.channels * 2) {
+ sbc->size = samples * priv->frame.channels * 2;
+ sbc->data = realloc(sbc->data, sbc->size);
+ }
+
+ if (!sbc->data) {
+ sbc->size = 0;
+ return -ENOMEM;
+ }
+
+ ptr = sbc->data;
+
+ for (i = 0; i < samples; i++) {
+ for (ch = 0; ch < priv->frame.channels; ch++) {
+ int16_t s = (int16_t)(priv->frame.pcm_sample[ch][i]);
+ *ptr++ = (s & 0xff00) >> 8;
+ *ptr++ = (s & 0x00ff);
+ }
+ }
+
+ sbc->len = samples * priv->frame.channels * 2;
+
+ return framelen;
+}
+
+int sbc_encode(sbc_t *sbc, void *data, int count)
+{
+ struct sbc_priv *priv;
+ char *ptr;
+ int i, ch, framelen, samples;
+
+ if (!sbc)
+ return -EIO;
+
+ priv = sbc->priv;
+
+ if (!priv->init) {
+ priv->frame.sampling_frequency = ((double) sbc->rate) / 1000;
+ priv->frame.channels = sbc->channels;
+
+ if (sbc->channels > 1)
+ priv->frame.channel_mode = STEREO;
+ else
+ priv->frame.channel_mode = MONO;
+
+ priv->frame.allocation_method = SNR;
+ priv->frame.subbands = 8;
+ priv->frame.blocks = 16;
+ priv->frame.bitpool = 32;
+
+ sbc_encoder_init(&priv->enc_state, &priv->frame);
+ priv->init = 1;
+ }
+
+ ptr = data;
+
+ for (i = 0; i < priv->frame.subbands * priv->frame.blocks; i++) {
+ for (ch = 0; ch < sbc->channels; ch++) {
+ //int16_t s = (ptr[0] & 0xff) << 8 | (ptr[1] & 0xff);
+ int16_t s = (ptr[1] & 0xff) << 8 | (ptr[2] & 0xff);
+ ptr += 2;
+ priv->frame.pcm_sample[ch][i] = ((double) s);
+ }
+ }
+
+ samples = sbc_analyze_audio(&priv->enc_state, &priv->frame);
+
+ if (!sbc->data) {
+ sbc->size = 1024;
+ sbc->data = malloc(sbc->size);
+ }
+
+ if (!sbc->data) {
+ sbc->size = 0;
+ return -ENOMEM;
+ }
+
+ framelen = sbc_pack_frame(sbc->data, &priv->frame, sbc->size);
+
+ sbc->len = framelen;
+
+ return samples * sbc->channels * 2;
+}
+
+void sbc_finish(sbc_t *sbc)
+{
+ if (!sbc)
+ return;
+
+ if (sbc->data)
+ free(sbc->data);
+
+ if (sbc->priv)
+ free(sbc->priv);
+
+ memset(sbc, 0, sizeof(sbc_t));
+}