summaryrefslogtreecommitdiffstats
path: root/sbc/sbc_primitives.c
diff options
context:
space:
mode:
authorSiarhei Siamashka <siarhei.siamashka@nokia.com>2009-01-27 18:57:35 +0200
committerMarcel Holtmann <marcel@holtmann.org>2009-01-28 06:42:10 +0100
commit19af3c49e61aa046375497108e05a3a0605da158 (patch)
treee7f5b52ce31dfa3fdf4d3ec0e649a95b9dd22eb8 /sbc/sbc_primitives.c
parent836c502d8adf137c586ffe6a5733d61ba2f57482 (diff)
Performance optimizations for input data processing in SBC encoder
Channels deinterleaving, endian conversion and samples reordering is done in one pass, avoiding the use of intermediate buffer. Also this code is implemented as a new "performance primitive", which allows further platform specific optimizations (ARMv6 and ARM NEON should gain quite a lot from assembly optimizations here).
Diffstat (limited to 'sbc/sbc_primitives.c')
-rw-r--r--sbc/sbc_primitives.c260
1 files changed, 204 insertions, 56 deletions
diff --git a/sbc/sbc_primitives.c b/sbc/sbc_primitives.c
index 602b473d..338feb96 100644
--- a/sbc/sbc_primitives.c
+++ b/sbc/sbc_primitives.c
@@ -25,6 +25,7 @@
#include <stdint.h>
#include <limits.h>
+#include <string.h>
#include "sbc.h"
#include "sbc_math.h"
#include "sbc_tables.h"
@@ -179,28 +180,9 @@ static inline void sbc_analyze_eight_simd(const int16_t *in, int32_t *out,
(SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS);
}
-static inline void sbc_analyze_4b_4s_simd(int16_t *pcm, int16_t *x,
+static inline void sbc_analyze_4b_4s_simd(int16_t *x,
int32_t *out, int out_stride)
{
- /* Fetch audio samples and do input data reordering for SIMD */
- x[64] = x[0] = pcm[8 + 7];
- x[65] = x[1] = pcm[8 + 3];
- x[66] = x[2] = pcm[8 + 6];
- x[67] = x[3] = pcm[8 + 4];
- x[68] = x[4] = pcm[8 + 0];
- x[69] = x[5] = pcm[8 + 2];
- x[70] = x[6] = pcm[8 + 1];
- x[71] = x[7] = pcm[8 + 5];
-
- x[72] = x[8] = pcm[0 + 7];
- x[73] = x[9] = pcm[0 + 3];
- x[74] = x[10] = pcm[0 + 6];
- x[75] = x[11] = pcm[0 + 4];
- x[76] = x[12] = pcm[0 + 0];
- x[77] = x[13] = pcm[0 + 2];
- x[78] = x[14] = pcm[0 + 1];
- x[79] = x[15] = pcm[0 + 5];
-
/* Analyze blocks */
sbc_analyze_four_simd(x + 12, out, analysis_consts_fixed4_simd_odd);
out += out_stride;
@@ -211,44 +193,9 @@ static inline void sbc_analyze_4b_4s_simd(int16_t *pcm, int16_t *x,
sbc_analyze_four_simd(x + 0, out, analysis_consts_fixed4_simd_even);
}
-static inline void sbc_analyze_4b_8s_simd(int16_t *pcm, int16_t *x,
+static inline void sbc_analyze_4b_8s_simd(int16_t *x,
int32_t *out, int out_stride)
{
- /* Fetch audio samples and do input data reordering for SIMD */
- x[128] = x[0] = pcm[16 + 15];
- x[129] = x[1] = pcm[16 + 7];
- x[130] = x[2] = pcm[16 + 14];
- x[131] = x[3] = pcm[16 + 8];
- x[132] = x[4] = pcm[16 + 13];
- x[133] = x[5] = pcm[16 + 9];
- x[134] = x[6] = pcm[16 + 12];
- x[135] = x[7] = pcm[16 + 10];
- x[136] = x[8] = pcm[16 + 11];
- x[137] = x[9] = pcm[16 + 3];
- x[138] = x[10] = pcm[16 + 6];
- x[139] = x[11] = pcm[16 + 0];
- x[140] = x[12] = pcm[16 + 5];
- x[141] = x[13] = pcm[16 + 1];
- x[142] = x[14] = pcm[16 + 4];
- x[143] = x[15] = pcm[16 + 2];
-
- x[144] = x[16] = pcm[0 + 15];
- x[145] = x[17] = pcm[0 + 7];
- x[146] = x[18] = pcm[0 + 14];
- x[147] = x[19] = pcm[0 + 8];
- x[148] = x[20] = pcm[0 + 13];
- x[149] = x[21] = pcm[0 + 9];
- x[150] = x[22] = pcm[0 + 12];
- x[151] = x[23] = pcm[0 + 10];
- x[152] = x[24] = pcm[0 + 11];
- x[153] = x[25] = pcm[0 + 3];
- x[154] = x[26] = pcm[0 + 6];
- x[155] = x[27] = pcm[0 + 0];
- x[156] = x[28] = pcm[0 + 5];
- x[157] = x[29] = pcm[0 + 1];
- x[158] = x[30] = pcm[0 + 4];
- x[159] = x[31] = pcm[0 + 2];
-
/* Analyze blocks */
sbc_analyze_eight_simd(x + 24, out, analysis_consts_fixed8_simd_odd);
out += out_stride;
@@ -259,6 +206,201 @@ static inline void sbc_analyze_4b_8s_simd(int16_t *pcm, int16_t *x,
sbc_analyze_eight_simd(x + 0, out, analysis_consts_fixed8_simd_even);
}
+static inline int16_t unaligned16_be(const uint8_t *ptr)
+{
+ return (int16_t) ((ptr[0] << 8) | ptr[1]);
+}
+
+static inline int16_t unaligned16_le(const uint8_t *ptr)
+{
+ return (int16_t) (ptr[0] | (ptr[1] << 8));
+}
+
+/*
+ * Internal helper functions for input data processing. In order to get
+ * optimal performance, it is important to have "nsamples", "nchannels"
+ * and "big_endian" arguments used with this inline function as compile
+ * time constants.
+ */
+
+static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s4_internal(
+ int position,
+ const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
+ int nsamples, int nchannels, int big_endian)
+{
+ /* handle X buffer wraparound */
+ if (position < nsamples) {
+ if (nchannels > 0)
+ memcpy(&X[0][SBC_X_BUFFER_SIZE - 36], &X[0][position],
+ 36 * sizeof(int16_t));
+ if (nchannels > 1)
+ memcpy(&X[1][SBC_X_BUFFER_SIZE - 36], &X[1][position],
+ 36 * sizeof(int16_t));
+ position = SBC_X_BUFFER_SIZE - 36;
+ }
+
+ #define PCM(i) (big_endian ? \
+ unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
+
+ /* copy/permutate audio samples */
+ while ((nsamples -= 8) >= 0) {
+ position -= 8;
+ if (nchannels > 0) {
+ int16_t *x = &X[0][position];
+ x[0] = PCM(0 + 7 * nchannels);
+ x[1] = PCM(0 + 3 * nchannels);
+ x[2] = PCM(0 + 6 * nchannels);
+ x[3] = PCM(0 + 4 * nchannels);
+ x[4] = PCM(0 + 0 * nchannels);
+ x[5] = PCM(0 + 2 * nchannels);
+ x[6] = PCM(0 + 1 * nchannels);
+ x[7] = PCM(0 + 5 * nchannels);
+ }
+ if (nchannels > 1) {
+ int16_t *x = &X[1][position];
+ x[0] = PCM(1 + 7 * nchannels);
+ x[1] = PCM(1 + 3 * nchannels);
+ x[2] = PCM(1 + 6 * nchannels);
+ x[3] = PCM(1 + 4 * nchannels);
+ x[4] = PCM(1 + 0 * nchannels);
+ x[5] = PCM(1 + 2 * nchannels);
+ x[6] = PCM(1 + 1 * nchannels);
+ x[7] = PCM(1 + 5 * nchannels);
+ }
+ pcm += 16 * nchannels;
+ }
+ #undef PCM
+
+ return position;
+}
+
+static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s8_internal(
+ int position,
+ const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
+ int nsamples, int nchannels, int big_endian)
+{
+ /* handle X buffer wraparound */
+ if (position < nsamples) {
+ if (nchannels > 0)
+ memcpy(&X[0][SBC_X_BUFFER_SIZE - 72], &X[0][position],
+ 72 * sizeof(int16_t));
+ if (nchannels > 1)
+ memcpy(&X[1][SBC_X_BUFFER_SIZE - 72], &X[1][position],
+ 72 * sizeof(int16_t));
+ position = SBC_X_BUFFER_SIZE - 72;
+ }
+
+ #define PCM(i) (big_endian ? \
+ unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
+
+ /* copy/permutate audio samples */
+ while ((nsamples -= 16) >= 0) {
+ position -= 16;
+ if (nchannels > 0) {
+ int16_t *x = &X[0][position];
+ x[0] = PCM(0 + 15 * nchannels);
+ x[1] = PCM(0 + 7 * nchannels);
+ x[2] = PCM(0 + 14 * nchannels);
+ x[3] = PCM(0 + 8 * nchannels);
+ x[4] = PCM(0 + 13 * nchannels);
+ x[5] = PCM(0 + 9 * nchannels);
+ x[6] = PCM(0 + 12 * nchannels);
+ x[7] = PCM(0 + 10 * nchannels);
+ x[8] = PCM(0 + 11 * nchannels);
+ x[9] = PCM(0 + 3 * nchannels);
+ x[10] = PCM(0 + 6 * nchannels);
+ x[11] = PCM(0 + 0 * nchannels);
+ x[12] = PCM(0 + 5 * nchannels);
+ x[13] = PCM(0 + 1 * nchannels);
+ x[14] = PCM(0 + 4 * nchannels);
+ x[15] = PCM(0 + 2 * nchannels);
+ }
+ if (nchannels > 1) {
+ int16_t *x = &X[1][position];
+ x[0] = PCM(1 + 15 * nchannels);
+ x[1] = PCM(1 + 7 * nchannels);
+ x[2] = PCM(1 + 14 * nchannels);
+ x[3] = PCM(1 + 8 * nchannels);
+ x[4] = PCM(1 + 13 * nchannels);
+ x[5] = PCM(1 + 9 * nchannels);
+ x[6] = PCM(1 + 12 * nchannels);
+ x[7] = PCM(1 + 10 * nchannels);
+ x[8] = PCM(1 + 11 * nchannels);
+ x[9] = PCM(1 + 3 * nchannels);
+ x[10] = PCM(1 + 6 * nchannels);
+ x[11] = PCM(1 + 0 * nchannels);
+ x[12] = PCM(1 + 5 * nchannels);
+ x[13] = PCM(1 + 1 * nchannels);
+ x[14] = PCM(1 + 4 * nchannels);
+ x[15] = PCM(1 + 2 * nchannels);
+ }
+ pcm += 32 * nchannels;
+ }
+ #undef PCM
+
+ return position;
+}
+
+/*
+ * Input data processing functions. The data is endian converted if needed,
+ * channels are deintrleaved and audio samples are reordered for use in
+ * SIMD-friendly analysis filter function. The results are put into "X"
+ * array, getting appended to the previous data (or it is better to say
+ * prepended, as the buffer is filled from top to bottom). Old data is
+ * discarded when neededed, but availability of (10 * nrof_subbands)
+ * contiguous samples is always guaranteed for the input to the analysis
+ * filter. This is achieved by copying a sufficient part of old data
+ * to the top of the buffer on buffer wraparound.
+ */
+
+static int sbc_enc_process_input_4s_le(int position,
+ const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
+ int nsamples, int nchannels)
+{
+ if (nchannels > 1)
+ return sbc_encoder_process_input_s4_internal(
+ position, pcm, X, nsamples, 2, 0);
+ else
+ return sbc_encoder_process_input_s4_internal(
+ position, pcm, X, nsamples, 1, 0);
+}
+
+static int sbc_enc_process_input_4s_be(int position,
+ const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
+ int nsamples, int nchannels)
+{
+ if (nchannels > 1)
+ return sbc_encoder_process_input_s4_internal(
+ position, pcm, X, nsamples, 2, 1);
+ else
+ return sbc_encoder_process_input_s4_internal(
+ position, pcm, X, nsamples, 1, 1);
+}
+
+static int sbc_enc_process_input_8s_le(int position,
+ const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
+ int nsamples, int nchannels)
+{
+ if (nchannels > 1)
+ return sbc_encoder_process_input_s8_internal(
+ position, pcm, X, nsamples, 2, 0);
+ else
+ return sbc_encoder_process_input_s8_internal(
+ position, pcm, X, nsamples, 1, 0);
+}
+
+static int sbc_enc_process_input_8s_be(int position,
+ const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
+ int nsamples, int nchannels)
+{
+ if (nchannels > 1)
+ return sbc_encoder_process_input_s8_internal(
+ position, pcm, X, nsamples, 2, 1);
+ else
+ return sbc_encoder_process_input_s8_internal(
+ position, pcm, X, nsamples, 1, 1);
+}
+
/*
* Detect CPU features and setup function pointers
*/
@@ -268,6 +410,12 @@ void sbc_init_primitives(struct sbc_encoder_state *state)
state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_simd;
state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_simd;
+ /* Default implementation for input reordering / deinterleaving */
+ state->sbc_enc_process_input_4s_le = sbc_enc_process_input_4s_le;
+ state->sbc_enc_process_input_4s_be = sbc_enc_process_input_4s_be;
+ state->sbc_enc_process_input_8s_le = sbc_enc_process_input_8s_le;
+ state->sbc_enc_process_input_8s_be = sbc_enc_process_input_8s_be;
+
/* X86/AMD64 optimizations */
#ifdef SBC_BUILD_WITH_MMX_SUPPORT
sbc_init_primitives_mmx(state);