diff options
author | Siarhei Siamashka <siarhei.siamashka@nokia.com> | 2009-01-22 00:12:40 +0200 |
---|---|---|
committer | Johan Hedberg <johan.hedberg@nokia.com> | 2009-01-23 21:13:02 +0200 |
commit | f70d1ada0aba5567fbf67cedfb4a4ba1a9f9852e (patch) | |
tree | a800c09447f7d2ff64d2b8b9ae815479046c94aa /sbc/sbc_primitives.c | |
parent | 3e88293bae37a5e78a8c46cc0eabf452a9591d26 (diff) |
Audio quality improvement for 16-bit fixed point SBC encoder
Multiplying the first part of the analysis filter constant tables
by some coefficients and dividing the second part by the same
coefficients is a transformation which should produce the same
results if rounding errors are not taken into account. These
additional C0/C1/... coefficients can be varied in a certain
range (the requirement is that we still do not get overflows).
The 'magic' values for these coefficients are selected in such
a way that the rounding errors are minimized (rounding errors
are unavoidable when putting all the floating constants into
16-bit tables and losing some of the fractional part).
Also non-SIMD variant of the analysis filter is dropped because
keeping it would require applying a similar change to its tables,
which is a bit tricky and just increases maintenance overhead.
Diffstat (limited to 'sbc/sbc_primitives.c')
-rw-r--r-- | sbc/sbc_primitives.c | 157 |
1 files changed, 12 insertions, 145 deletions
diff --git a/sbc/sbc_primitives.c b/sbc/sbc_primitives.c index e3a77643..602b473d 100644 --- a/sbc/sbc_primitives.c +++ b/sbc/sbc_primitives.c @@ -34,155 +34,22 @@ #include "sbc_primitives_neon.h" /* - * A standard C code of analysis filter. - */ -static inline void sbc_analyze_four(const int16_t *in, int32_t *out) -{ - FIXED_A t1[4]; - FIXED_T t2[4]; - int i = 0, hop = 0; - - /* rounding coefficient */ - t1[0] = t1[1] = t1[2] = t1[3] = - (FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1); - - /* low pass polyphase filter */ - for (hop = 0; hop < 40; hop += 8) { - t1[0] += (FIXED_A) in[hop] * _sbc_proto_fixed4[hop]; - t1[1] += (FIXED_A) in[hop + 1] * _sbc_proto_fixed4[hop + 1]; - t1[2] += (FIXED_A) in[hop + 2] * _sbc_proto_fixed4[hop + 2]; - t1[1] += (FIXED_A) in[hop + 3] * _sbc_proto_fixed4[hop + 3]; - t1[0] += (FIXED_A) in[hop + 4] * _sbc_proto_fixed4[hop + 4]; - t1[3] += (FIXED_A) in[hop + 5] * _sbc_proto_fixed4[hop + 5]; - t1[3] += (FIXED_A) in[hop + 7] * _sbc_proto_fixed4[hop + 7]; - } - - /* scaling */ - t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE; - t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE; - t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE; - t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE; - - /* do the cos transform */ - for (i = 0, hop = 0; i < 4; hop += 8, i++) { - out[i] = ((FIXED_A) t2[0] * cos_table_fixed_4[0 + hop] + - (FIXED_A) t2[1] * cos_table_fixed_4[1 + hop] + - (FIXED_A) t2[2] * cos_table_fixed_4[2 + hop] + - (FIXED_A) t2[3] * cos_table_fixed_4[5 + hop]) >> - (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS); - } -} - -static void sbc_analyze_4b_4s(int16_t *pcm, int16_t *x, - int32_t *out, int out_stride) -{ - int i; - - /* Input 4 x 4 Audio Samples */ - for (i = 0; i < 16; i += 4) { - x[64 + i] = x[0 + i] = pcm[15 - i]; - x[65 + i] = x[1 + i] = pcm[14 - i]; - x[66 + i] = x[2 + i] = pcm[13 - i]; - x[67 + i] = x[3 + i] = pcm[12 - i]; - } - - /* Analyze four blocks */ - sbc_analyze_four(x + 12, out); - out += out_stride; - sbc_analyze_four(x + 8, out); - out += out_stride; - sbc_analyze_four(x + 4, out); - out += out_stride; - sbc_analyze_four(x, out); -} - -static inline void sbc_analyze_eight(const int16_t *in, int32_t *out) -{ - FIXED_A t1[8]; - FIXED_T t2[8]; - int i, hop; - - /* rounding coefficient */ - t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = - (FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1); - - /* low pass polyphase filter */ - for (hop = 0; hop < 80; hop += 16) { - t1[0] += (FIXED_A) in[hop] * _sbc_proto_fixed8[hop]; - t1[1] += (FIXED_A) in[hop + 1] * _sbc_proto_fixed8[hop + 1]; - t1[2] += (FIXED_A) in[hop + 2] * _sbc_proto_fixed8[hop + 2]; - t1[3] += (FIXED_A) in[hop + 3] * _sbc_proto_fixed8[hop + 3]; - t1[4] += (FIXED_A) in[hop + 4] * _sbc_proto_fixed8[hop + 4]; - t1[3] += (FIXED_A) in[hop + 5] * _sbc_proto_fixed8[hop + 5]; - t1[2] += (FIXED_A) in[hop + 6] * _sbc_proto_fixed8[hop + 6]; - t1[1] += (FIXED_A) in[hop + 7] * _sbc_proto_fixed8[hop + 7]; - t1[0] += (FIXED_A) in[hop + 8] * _sbc_proto_fixed8[hop + 8]; - t1[5] += (FIXED_A) in[hop + 9] * _sbc_proto_fixed8[hop + 9]; - t1[6] += (FIXED_A) in[hop + 10] * _sbc_proto_fixed8[hop + 10]; - t1[7] += (FIXED_A) in[hop + 11] * _sbc_proto_fixed8[hop + 11]; - t1[7] += (FIXED_A) in[hop + 13] * _sbc_proto_fixed8[hop + 13]; - t1[6] += (FIXED_A) in[hop + 14] * _sbc_proto_fixed8[hop + 14]; - t1[5] += (FIXED_A) in[hop + 15] * _sbc_proto_fixed8[hop + 15]; - } - - /* scaling */ - t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE; - t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE; - t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE; - t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE; - t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE; - t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE; - t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE; - t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE; - - /* do the cos transform */ - for (i = 0, hop = 0; i < 8; hop += 16, i++) { - out[i] = ((FIXED_A) t2[0] * cos_table_fixed_8[0 + hop] + - (FIXED_A) t2[1] * cos_table_fixed_8[1 + hop] + - (FIXED_A) t2[2] * cos_table_fixed_8[2 + hop] + - (FIXED_A) t2[3] * cos_table_fixed_8[3 + hop] + - (FIXED_A) t2[4] * cos_table_fixed_8[4 + hop] + - (FIXED_A) t2[5] * cos_table_fixed_8[9 + hop] + - (FIXED_A) t2[6] * cos_table_fixed_8[10 + hop] + - (FIXED_A) t2[7] * cos_table_fixed_8[11 + hop]) >> - (SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS); - } -} - -static void sbc_analyze_4b_8s(int16_t *pcm, int16_t *x, - int32_t *out, int out_stride) -{ - int i; - - /* Input 4 x 8 Audio Samples */ - for (i = 0; i < 32; i += 8) { - x[128 + i] = x[0 + i] = pcm[31 - i]; - x[129 + i] = x[1 + i] = pcm[30 - i]; - x[130 + i] = x[2 + i] = pcm[29 - i]; - x[131 + i] = x[3 + i] = pcm[28 - i]; - x[132 + i] = x[4 + i] = pcm[27 - i]; - x[133 + i] = x[5 + i] = pcm[26 - i]; - x[134 + i] = x[6 + i] = pcm[25 - i]; - x[135 + i] = x[7 + i] = pcm[24 - i]; - } - - /* Analyze four blocks */ - sbc_analyze_eight(x + 24, out); - out += out_stride; - sbc_analyze_eight(x + 16, out); - out += out_stride; - sbc_analyze_eight(x + 8, out); - out += out_stride; - sbc_analyze_eight(x, out); -} - -/* * A reference C code of analysis filter with SIMD-friendly tables * reordering and code layout. This code can be used to develop platform * specific SIMD optimizations. Also it may be used as some kind of test * for compiler autovectorization capabilities (who knows, if the compiler * is very good at this stuff, hand optimized assembly may be not strictly * needed for some platform). + * + * Note: It is also possible to make a simple variant of analysis filter, + * which needs only a single constants table without taking care about + * even/odd cases. This simple variant of filter can be implemented without + * input data permutation. The only thing that would be lost is the + * possibility to use pairwise SIMD multiplications. But for some simple + * CPU cores without SIMD extensions it can be useful. If anybody is + * interested in implementing such variant of a filter, sourcecode from + * bluez versions 4.26/4.27 can be used as a reference and the history of + * the changes in git repository done around that time may be worth checking. */ static inline void sbc_analyze_four_simd(const int16_t *in, int32_t *out, @@ -398,8 +265,8 @@ static inline void sbc_analyze_4b_8s_simd(int16_t *pcm, int16_t *x, void sbc_init_primitives(struct sbc_encoder_state *state) { /* Default implementation for analyze functions */ - state->sbc_analyze_4b_4s = sbc_analyze_4b_4s; - state->sbc_analyze_4b_8s = sbc_analyze_4b_8s; + state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_simd; + state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_simd; /* X86/AMD64 optimizations */ #ifdef SBC_BUILD_WITH_MMX_SUPPORT |