/* xmmx.h eXtended MultiMedia eXtensions GCC interface library for IA32. To use this library, simply include this header file and compile with GCC. You MUST have inlining enabled in order for xmmx_ok() to work; this can be done by simply using -O on the GCC command line. Compiling with -DXMMX_TRACE will cause detailed trace output to be sent to stderr for each mmx operation. This adds lots of code, and obviously slows execution to a crawl, but can be very useful for debugging. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE. 1999 by R. Fisher Based on libmmx, 1997-99 by H. Dietz and R. Fisher Notes: It appears that the latest gas has the pand problem fixed, therefore I'll undefine BROKEN_PAND by default. */ #ifndef _XMMX_H #define _XMMX_H /* Warning: at this writing, the version of GAS packaged with most Linux distributions does not handle the parallel AND operation mnemonic correctly. If the symbol BROKEN_PAND is defined, a slower alternative coding will be used. If execution of mmxtest results in an illegal instruction fault, define this symbol. */ #undef BROKEN_PAND /* The type of an value that fits in an (Extended) MMX register (note that long long constant values MUST be suffixed by LL and unsigned long long values by ULL, lest they be truncated by the compiler) */ #ifndef _MMX_H typedef union { long long q; /* Quadword (64-bit) value */ unsigned long long uq; /* Unsigned Quadword */ int d[2]; /* 2 Doubleword (32-bit) values */ unsigned int ud[2]; /* 2 Unsigned Doubleword */ short w[4]; /* 4 Word (16-bit) values */ unsigned short uw[4]; /* 4 Unsigned Word */ char b[8]; /* 8 Byte (8-bit) values */ unsigned char ub[8]; /* 8 Unsigned Byte */ float s[2]; /* Single-precision (32-bit) value */ } __attribute__ ((aligned (8))) mmx_t; /* On an 8-byte (64-bit) boundary */ #endif /* Function to test if multimedia instructions are supported... */ static int mm_support(void) { /* Returns 1 if MMX instructions are supported, 3 if Cyrix MMX and Extended MMX instructions are supported 5 if AMD MMX and 3DNow! instructions are supported 0 if hardware does not support any of these */ register int rval = 0; __asm__ __volatile__ ( /* See if CPUID instruction is supported ... */ /* ... Get copies of EFLAGS into eax and ecx */ "pushf\n\t" "popl %%eax\n\t" "movl %%eax, %%ecx\n\t" /* ... Toggle the ID bit in one copy and store */ /* to the EFLAGS reg */ "xorl $0x200000, %%eax\n\t" "push %%eax\n\t" "popf\n\t" /* ... Get the (hopefully modified) EFLAGS */ "pushf\n\t" "popl %%eax\n\t" /* ... Compare and test result */ "xorl %%eax, %%ecx\n\t" "testl $0x200000, %%ecx\n\t" "jz NotSupported1\n\t" /* CPUID not supported */ /* Get standard CPUID information, and go to a specific vendor section */ "movl $0, %%eax\n\t" "cpuid\n\t" /* Check for Intel */ "cmpl $0x756e6547, %%ebx\n\t" "jne TryAMD\n\t" "cmpl $0x49656e69, %%edx\n\t" "jne TryAMD\n\t" "cmpl $0x6c65746e, %%ecx\n" "jne TryAMD\n\t" "jmp Intel\n\t" /* Check for AMD */ "\nTryAMD:\n\t" "cmpl $0x68747541, %%ebx\n\t" "jne TryCyrix\n\t" "cmpl $0x69746e65, %%edx\n\t" "jne TryCyrix\n\t" "cmpl $0x444d4163, %%ecx\n" "jne TryCyrix\n\t" "jmp AMD\n\t" /* Check for Cyrix */ "\nTryCyrix:\n\t" "cmpl $0x69727943, %%ebx\n\t" "jne NotSupported2\n\t" "cmpl $0x736e4978, %%edx\n\t" "jne NotSupported3\n\t" "cmpl $0x64616574, %%ecx\n\t" "jne NotSupported4\n\t" /* Drop through to Cyrix... */ /* Cyrix Section */ /* See if extended CPUID level 80000001 is supported */ /* The value of CPUID/80000001 for the 6x86MX is undefined according to the Cyrix CPU Detection Guide (Preliminary Rev. 1.01 table 1), so we'll check the value of eax for CPUID/0 to see if standard CPUID level 2 is supported. According to the table, the only CPU which supports level 2 is also the only one which supports extended CPUID levels. */ "cmpl $0x2, %%eax\n\t" "jne MMXtest\n\t" /* Use standard CPUID instead */ /* Extended CPUID supported (in theory), so get extended features */ "movl $0x80000001, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%eax\n\t" /* Test for MMX */ "jz NotSupported5\n\t" /* MMX not supported */ "testl $0x01000000, %%eax\n\t" /* Test for Ext'd MMX */ "jnz EMMXSupported\n\t" "movl $1, %0:\n\n\t" /* MMX Supported */ "jmp Return\n\n" "EMMXSupported:\n\t" "movl $3, %0:\n\n\t" /* EMMX and MMX Supported */ "jmp Return\n\t" /* AMD Section */ "AMD:\n\t" /* See if extended CPUID is supported */ "movl $0x80000000, %%eax\n\t" "cpuid\n\t" "cmpl $0x80000000, %%eax\n\t" "jl MMXtest\n\t" /* Use standard CPUID instead */ /* Extended CPUID supported, so get extended features */ "movl $0x80000001, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%edx\n\t" /* Test for MMX */ "jz NotSupported6\n\t" /* MMX not supported */ "testl $0x80000000, %%edx\n\t" /* Test for 3DNow! */ "jnz ThreeDNowSupported\n\t" "movl $1, %0:\n\n\t" /* MMX Supported */ "jmp Return\n\n" "ThreeDNowSupported:\n\t" "movl $5, %0:\n\n\t" /* 3DNow! and MMX Supported */ "jmp Return\n\t" /* Intel Section */ "Intel:\n\t" /* Check for MMX */ "MMXtest:\n\t" "movl $1, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%edx\n\t" /* Test for MMX */ "jz NotSupported7\n\t" /* MMX Not supported */ "movl $1, %0:\n\n\t" /* MMX Supported */ "jmp Return\n\t" /* Nothing supported */ "\nNotSupported1:\n\t" "#movl $101, %0:\n\n\t" "\nNotSupported2:\n\t" "#movl $102, %0:\n\n\t" "\nNotSupported3:\n\t" "#movl $103, %0:\n\n\t" "\nNotSupported4:\n\t" "#movl $104, %0:\n\n\t" "\nNotSupported5:\n\t" "#movl $105, %0:\n\n\t" "\nNotSupported6:\n\t" "#movl $106, %0:\n\n\t" "\nNotSupported7:\n\t" "#movl $107, %0:\n\n\t" "movl $0, %0:\n\n\t" "Return:\n\t" : "=a" (rval) : /* no input */ : "eax", "ebx", "ecx", "edx" ); /* Return */ return(rval); } /* Function to test if mmx instructions are supported... */ #ifndef _XMMX_H inline extern int mmx_ok(void) { /* Returns 1 if MMX instructions are supported, 0 otherwise */ return ( mm_support() & 0x1 ); } #endif /* Function to test if xmmx instructions are supported... */ inline extern int xmmx_ok(void) { /* Returns 1 if Extended MMX instructions are supported, 0 otherwise */ return ( (mm_support() & 0x2) >> 1 ); } /* Helper functions for the instruction macros that follow... (note that memory-to-register, m2r, instructions are nearly as efficient as register-to-register, r2r, instructions; however, memory-to-memory instructions are really simulated as a convenience, and are only 1/3 as efficient) */ #ifdef XMMX_TRACE /* Include the stuff for printing a trace to stderr... */ #include #define mmx_i2r(op, imm, reg) \ { \ mmx_t mmx_trace; \ mmx_trace.uq = (imm); \ fprintf(stderr, #op "_i2r(" #imm "=0x%08x%08x, ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ ("movq %%" #reg ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ fprintf(stderr, #reg "=0x%08x%08x) => ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ (#op " %0, %%" #reg \ : /* nothing */ \ : "X" (imm)); \ __asm__ __volatile__ ("movq %%" #reg ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ fprintf(stderr, #reg "=0x%08x%08x\n", \ mmx_trace.d[1], mmx_trace.d[0]); \ } #define mmx_m2r(op, mem, reg) \ { \ mmx_t mmx_trace; \ mmx_trace = (mem); \ fprintf(stderr, #op "_m2r(" #mem "=0x%08x%08x, ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ ("movq %%" #reg ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ fprintf(stderr, #reg "=0x%08x%08x) => ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ (#op " %0, %%" #reg \ : /* nothing */ \ : "X" (mem)); \ __asm__ __volatile__ ("movq %%" #reg ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ fprintf(stderr, #reg "=0x%08x%08x\n", \ mmx_trace.d[1], mmx_trace.d[0]); \ } #define mmx_r2m(op, reg, mem) \ { \ mmx_t mmx_trace; \ __asm__ __volatile__ ("movq %%" #reg ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ fprintf(stderr, #op "_r2m(" #reg "=0x%08x%08x, ", \ mmx_trace.d[1], mmx_trace.d[0]); \ mmx_trace = (mem); \ fprintf(stderr, #mem "=0x%08x%08x) => ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ (#op " %%" #reg ", %0" \ : "=X" (mem) \ : /* nothing */ ); \ mmx_trace = (mem); \ fprintf(stderr, #mem "=0x%08x%08x\n", \ mmx_trace.d[1], mmx_trace.d[0]); \ } #define mmx_r2r(op, regs, regd) \ { \ mmx_t mmx_trace; \ __asm__ __volatile__ ("movq %%" #regs ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ fprintf(stderr, #op "_r2r(" #regs "=0x%08x%08x, ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ ("movq %%" #regd ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ fprintf(stderr, #regd "=0x%08x%08x) => ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ (#op " %" #regs ", %" #regd); \ __asm__ __volatile__ ("movq %%" #regd ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ fprintf(stderr, #regd "=0x%08x%08x\n", \ mmx_trace.d[1], mmx_trace.d[0]); \ } #define mmx_m2m(op, mems, memd) \ { \ mmx_t mmx_trace; \ mmx_trace = (mems); \ fprintf(stderr, #op "_m2m(" #mems "=0x%08x%08x, ", \ mmx_trace.d[1], mmx_trace.d[0]); \ mmx_trace = (memd); \ fprintf(stderr, #memd "=0x%08x%08x) => ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ ("movq %0, %%mm0\n\t" \ #op " %1, %%mm0\n\t" \ "movq %%mm0, %0" \ : "=X" (memd) \ : "X" (mems)); \ mmx_trace = (memd); \ fprintf(stderr, #memd "=0x%08x%08x\n", \ mmx_trace.d[1], mmx_trace.d[0]); \ } #else /* These macros are a lot simpler without the tracing... */ #define mmx_i2r(op, imm, reg) \ __asm__ __volatile__ (#op " %0, %%" #reg \ : /* nothing */ \ : "X" (imm) ) #define mmx_m2r(op, mem, reg) \ __asm__ __volatile__ (#op " %0, %%" #reg \ : /* nothing */ \ : "X" (mem)) #define mmx_m2ir(op, mem, rs) \ __asm__ __volatile__ (#op " %0, %%" #rs \ : /* nothing */ \ : "X" (mem) ) #define mmx_r2m(op, reg, mem) \ __asm__ __volatile__ (#op " %%" #reg ", %0" \ : "=X" (mem) \ : /* nothing */ ) #define mmx_r2r(op, regs, regd) \ __asm__ __volatile__ (#op " %" #regs ", %" #regd) #define mmx_r2ir(op, rs1, rs2) \ __asm__ __volatile__ (#op " %%" #rs1 ", %%" #rs2 \ : /* nothing */ \ : /* nothing */ ) #define mmx_m2m(op, mems, memd) \ __asm__ __volatile__ ("movq %0, %%mm0\n\t" \ #op " %1, %%mm0\n\t" \ "movq %%mm0, %0" \ : "=X" (memd) \ : "X" (mems)) #endif /* 1x64 MOVe Quadword (this is both a load and a store... in fact, it is the only way to store) */ #define movq_m2r(var, reg) mmx_m2r(movq, var, reg) #define movq_r2m(reg, var) mmx_r2m(movq, reg, var) #define movq_r2r(regs, regd) mmx_r2r(movq, regs, regd) #define movq(vars, vard) \ __asm__ __volatile__ ("movq %1, %%mm0\n\t" \ "movq %%mm0, %0" \ : "=X" (vard) \ : "X" (vars)) /* 1x32 MOVe Doubleword (like movq, this is both load and store... but is most useful for moving things between mmx registers and ordinary registers) */ #define movd_m2r(var, reg) mmx_m2r(movd, var, reg) #define movd_r2m(reg, var) mmx_r2m(movd, reg, var) #define movd_r2r(regs, regd) mmx_r2r(movd, regs, regd) #define movd(vars, vard) \ __asm__ __volatile__ ("movd %1, %%mm0\n\t" \ "movd %%mm0, %0" \ : "=X" (vard) \ : "X" (vars)) /* 4x16 Parallel MAGnitude */ #define pmagw_m2r(var, reg) mmx_m2r(pmagw, var, reg) #define pmagw_r2r(regs, regd) mmx_r2r(pmagw, regs, regd) #define pmagw(vars, vard) mmx_m2m(pmagw, vars, vard) /* 4x16 Parallel ADDs using Saturation arithmetic and Implied destination */ #define paddsiw_m2ir(var, rs) mmx_m2ir(paddsiw, var, rs) #define paddsiw_r2ir(rs1, rs2) mmx_r2ir(paddsiw, rs1, rs2) #define paddsiw(vars, vard) mmx_m2m(paddsiw, vars, vard) /* 4x16 Parallel SUBs using Saturation arithmetic and Implied destination */ #define psubsiw_m2ir(var, rs) mmx_m2ir(psubsiw, var, rs) #define psubsiw_r2ir(rs1, rs2) mmx_r2ir(psubsiw, rs1, rs2) #define psubsiw(vars, vard) mmx_m2m(psubsiw, vars, vard) /* 4x16 Parallel MULs giving High 4x16 portions of results Rounded with 1/2 bit 15. */ #define pmulhrw_m2r(var, reg) mmx_m2r(pmulhrw, var, reg) #define pmulhrw_r2r(regs, regd) mmx_r2r(pmulhrw, regs, regd) #define pmulhrw(vars, vard) mmx_m2m(pmulhrw, vars, vard) /* 4x16 Parallel MULs giving High 4x16 portions of results Rounded with 1/2 bit 15, storing to Implied register */ #define pmulhriw_m2ir(var, rs) mmx_m2ir(pmulhriw, var, rs) #define pmulhriw_r2ir(rs1, rs2) mmx_r2ir(pmulhriw, rs1, rs2) #define pmulhriw(vars, vard) mmx_m2m(pmulhriw, vars, vard) /* 4x16 Parallel Muls (and ACcumulate) giving High 4x16 portions of results Rounded with 1/2 bit 15, accumulating with Implied register */ #define pmachriw_m2ir(var, rs) mmx_m2ir(pmachriw, var, rs) #define pmachriw_r2ir(rs1, rs2) mmx_r2ir(pmachriw, rs1, rs2) #define pmachriw(vars, vard) mmx_m2m(pmachriw, vars, vard) /* 8x8u Parallel AVErage */ #define paveb_m2r(var, reg) mmx_m2r(paveb, var, reg) #define paveb_r2r(regs, regd) mmx_r2r(paveb, regs, regd) #define paveb(vars, vard) mmx_m2m(paveb, vars, vard) /* 8x8u Parallel DISTance and accumulate with unsigned saturation to Implied register */ #define pdistib_m2ir(var, rs) mmx_m2ir(pdistib, var, rs) #define pdistib(vars, vard) mmx_m2m(pdistib, vars, vard) /* 8x8 Parallel conditional MoVe if implied register field is Zero */ #define pmvzb_m2ir(var, rs) mmx_m2ir(pmvzb, var, rs) /* 8x8 Parallel conditional MoVe if implied register field is Not Zero */ #define pmvnzb_m2ir(var, rs) mmx_m2ir(pmvnzb, var, rs) /* 8x8 Parallel conditional MoVe if implied register field is Less than Zero */ #define pmvlzb_m2ir(var, rs) mmx_m2ir(pmvlzb, var, rs) /* 8x8 Parallel conditional MoVe if implied register field is Greater than or Equal to Zero */ #define pmvgezb_m2ir(var, rs) mmx_m2ir(pmvgezb, var, rs) /* Fast Empty MMx State (used to clean-up when going from mmx to float use of the registers that are shared by both; note that there is no float-to-xmmx operation needed, because only the float tag word info is corruptible) */ #ifdef XMMX_TRACE #define femms() \ { \ fprintf(stderr, "femms()\n"); \ __asm__ __volatile__ ("femms"); \ } #else #define femms() __asm__ __volatile__ ("femms") #endif #endif