From 431555030ead3aabad83028f359849314e95065e Mon Sep 17 00:00:00 2001 From: Jason Newton Date: Mon, 22 Jun 2009 00:36:14 -0700 Subject: module-equalizer-sink added src/Makefile.am: added module-equalizer-sink --- src/modules/module-equalizer-sink.c | 850 ++++++++++++++++++++++++++++++++++++ 1 file changed, 850 insertions(+) create mode 100755 src/modules/module-equalizer-sink.c (limited to 'src/modules/module-equalizer-sink.c') diff --git a/src/modules/module-equalizer-sink.c b/src/modules/module-equalizer-sink.c new file mode 100755 index 00000000..8b34fa0d --- /dev/null +++ b/src/modules/module-equalizer-sink.c @@ -0,0 +1,850 @@ + + +#ifdef HAVE_CONFIG_H +#include +#endif + +#include +#include +#include +#include + + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +#include +#include + + +#include "module-equalizer-sink-symdef.h" + +PA_MODULE_AUTHOR("Jason Newton"); +PA_MODULE_DESCRIPTION(_("General Purpose Equalizer")); +PA_MODULE_VERSION(PACKAGE_VERSION); +PA_MODULE_LOAD_ONCE(FALSE); +PA_MODULE_USAGE(_("sink= ")); + +#define MEMBLOCKQ_MAXLENGTH (16*1024*1024) + +struct userdata { + pa_core *core; + pa_module *module; + pa_sink *sink, *master; + pa_sink_input *sink_input; + + size_t channels; + size_t fft_size; //length (res) of fft + size_t window_size;//even! + size_t overlap_size; + size_t samples_gathered; + size_t n_buffered_output; + size_t max_output; + float *H;//frequency response filter (magnitude based) + float *W;//windowing function (time domain) + float *work_buffer,**input,**overlap_accum,**output_buffer; + fftwf_complex *output_window; + fftwf_plan forward_plan,inverse_plan; + + pa_memblockq *memblockq; +}; + +static const char* const valid_modargs[] = { + "sink_name", + "sink_properties", + "master", + "format", + "rate", + "channels", + "channel_map", + NULL +}; + +uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p) +{ + return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) - + ((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec); +} + +void hanning_normalized_window(float *W,size_t window_size){ + //h = sqrt(2)/2 * (1+cos(t*pi)) ./ sqrt( 1+cos(t*pi).^2 ) + float c; + for(size_t i=0;iuserdata; + + switch (code) { + + case PA_SINK_MESSAGE_GET_LATENCY: { + pa_usec_t usec = 0; + pa_sample_spec *ss=&u->sink->sample_spec; + + /* Get the latency of the master sink */ + if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0) + usec = 0; + + usec+=pa_bytes_to_usec(u->n_buffered_output*pa_frame_size(ss),ss); + /* Add the latency internal to our sink input on top */ + usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec); + *((pa_usec_t*) data) = usec; + return 0; + } + } + + return pa_sink_process_msg(o, code, data, offset, chunk); +} + + +/* Called from main context */ +static int sink_set_state(pa_sink *s, pa_sink_state_t state) { + struct userdata *u; + + pa_sink_assert_ref(s); + pa_assert_se(u = s->userdata); + + if (PA_SINK_IS_LINKED(state) && + u->sink_input && + PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input))) + + pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED); + + return 0; +} + +/* Called from I/O thread context */ +static void sink_request_rewind(pa_sink *s) { + struct userdata *u; + + pa_sink_assert_ref(s); + pa_assert_se(u = s->userdata); + + /* Just hand this one over to the master sink */ + pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->memblockq), TRUE, FALSE, FALSE); +} + +/* Called from I/O thread context */ +static void sink_update_requested_latency(pa_sink *s) { + struct userdata *u; + + pa_sink_assert_ref(s); + pa_assert_se(u = s->userdata); + + /* Just hand this one over to the master sink */ + pa_sink_input_set_requested_latency_within_thread( + u->sink_input, + pa_sink_get_requested_latency_within_thread(s)); +} + +/* Called from I/O thread context */ +static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) { + struct userdata *u; + float *src, *dst; + size_t c; + pa_memchunk tchunk; + pa_sink_input_assert_ref(i); + pa_assert(chunk); + pa_assert_se(u = i->userdata); + size_t fs = pa_frame_size(&u->sink->sample_spec); + size_t ss=pa_sample_size(&u->sink->sample_spec); + size_t fe = fs/ss; + + if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state)) + return -1; + + //output any buffered outputs first + if(u->n_buffered_output>0){ + //pa_log("outputing %ld buffered samples",u->n_buffered_output); + chunk->index = 0; + size_t n_outputable=PA_MIN(u->n_buffered_output,nbytes/fs); + chunk->length = n_outputable*fs; + chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length); + pa_memblockq_drop(u->memblockq, chunk->length); + dst = (float*) pa_memblock_acquire(chunk->memblock); + for(size_t j=0;jchannels;++j){ + pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+j, fs, u->output_buffer[j], sizeof(float),n_outputable); + memmove(u->output_buffer[j],u->output_buffer[j]+n_outputable,(u->n_buffered_output-n_outputable)*sizeof(float)); + } + u->n_buffered_output-=n_outputable; + pa_memblock_release(chunk->memblock); + return 0; + } + pa_assert_se(u->n_buffered_output==0); + + //collect the minimum number of samples + while(u->samples_gathered < (u->window_size-u->overlap_size)){ + //render some new fragments to our memblockq + //size_t desired_samples=PA_MIN(u->min_input-samples_gathered,u->max_output); + size_t desired_samples=PA_MIN((u->window_size-u->overlap_size)-u->samples_gathered,u->max_output); + while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) { + pa_memchunk nchunk; + + pa_sink_render(u->sink, desired_samples*fs, &nchunk); + pa_memblockq_push(u->memblockq, &nchunk); + pa_memblock_unref(nchunk.memblock); + } + if(tchunk.length/fs!=desired_samples){ + pa_log("got %ld samples, asked for %ld",tchunk.length/fs,desired_samples); + } + size_t n_samples=PA_MIN(tchunk.length/fs,u->window_size-u->overlap_size-u->samples_gathered); + //TODO: figure out what to do with rest of the samples when there's too many (rare?) + src = (float*) ((uint8_t*) pa_memblock_acquire(tchunk.memblock) + tchunk.index); + for (size_t c=0;cchannels;c++) { + pa_sample_clamp(PA_SAMPLE_FLOAT32NE,u->input[c]+u->overlap_size+u->samples_gathered,sizeof(float), src+c, fs, n_samples); + } + + u->samples_gathered+=n_samples; + pa_memblock_release(tchunk.memblock); + pa_memblock_unref(tchunk.memblock); + } + //IT should be this guy if we're buffering like how its supposed to + //size_t n_outputable=PA_MIN(u->window_size-u->overlap_size,nbytes/fs); + //This one takes into account the actual data gathered but then the dsp + //stuff is wrong when the buffer "underruns" + size_t n_outputable=PA_MIN(u->samples_gathered,nbytes/fs); + /* + //debugging: tests if immediate release of freshly buffered data + //plays ok and prevents any other processing + chunk->index=0; + chunk->length=n_outputable*fs; + chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length); + pa_memblockq_drop(u->memblockq, chunk->length); + dst = (float*) pa_memblock_acquire(chunk->memblock);; + for (size_t c=0;cchannels;c++) { + pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c, fs, u->input[c]+u->overlap_size, sizeof(float),n_outputable); + } + u->samples_gathered=0; + pa_memblock_release(chunk->memblock); + return 0; + */ + + //pa_log("%ld dequed samples",u->samples_gathered); + + chunk->index=0; + chunk->length=n_outputable*fs; + chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length); + pa_memblockq_drop(u->memblockq, chunk->length); + dst = (float*) pa_memblock_acquire(chunk->memblock); + //pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input, sizeof(float), src+c, fs, samples); + //pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c,fs, u->input, sizeof(float), samples); + + /* + struct timespec start, end; + uint64_t elapsed; + clock_gettime(CLOCK_MONOTONIC, &start); + */ + //use a zero-phase sliding dft and overlap-add method + + pa_assert_se(u->fft_size>=u->window_size); + //pa_assert_se(u->window_size%2==0); + pa_assert_se(u->overlap_sizewindow_size); + pa_assert_se(u->samples_gathered>=u->window_size-u->overlap_size); + size_t sample_rem=u->window_size-u->overlap_size-n_outputable; + //size_t w_mid=u->window_size/2; + //pa_log("hello world a"); + for (c=0;cchannels;c++) { + //center the data for zero phase + //zero-pad TODO: optimization if sure these zeros aren't overwritten + //memset(u->work_buffer+w_mid,0,(u->fft_size-u->window_size)*sizeof(float)); + //memset(u->work_buffer,0,u->fft_size*sizeof(float)); + /* + for(size_t j=0;jwindow_size;++j){ + u->work_buffer[j]=u->W[j]*u->input[c][j]; + u->work_buffer[j]=u->input[c][j]; + } + */ + //zero padd the data, don't worry about zerophase, shouldn't really matter + memset(u->work_buffer+u->overlap_size,0,(u->fft_size-u->overlap_size)*sizeof(float)); + //window the data + for(size_t j=0;jwindow_size;++j){ + u->work_buffer[j]=u->W[j]*u->input[c][j]; + } + /* + //recenter for zero phase + for(size_t j=0;jwork_buffer[j]; + u->work_buffer[j]=u->input[c][j+w_mid]; + u->work_buffer[j+u->fft_size-w_mid]=tmp; + } + */ + //pa_log("hello world b"); + + /* + //window and zero phase shift + for(size_t j=0;jwork_buffer[j]=u->input[c][j+w_mid]; + //u->work_buffer[j+u->fft_size-w_mid]=u->input[c][j]; + u->work_buffer[j]=u->W[j+w_mid]*u->input[c][j+w_mid]; + u->work_buffer[j+u->fft_size-w_mid]=u->W[j]*u->input[c][j]; + }*/ + //Processing is done here! + //do fft + fftwf_execute_dft_r2c(u->forward_plan,u->work_buffer,u->output_window); + //perform filtering + for(size_t j=0;jfft_size/2+1;++j){ + ////identity transform (fft size) + //u->output_window[j][0]/=u->fft_size; + //u->output_window[j][1]/=u->fft_size; + ////identity transform (window size) + //u->output_window[j][0]/=u->window_size; + //u->output_window[j][1]/=u->window_size; + //filtered + u->output_window[j][0]*=u->H[j]; + u->output_window[j][1]*=u->H[j]; + } + //inverse fft + fftwf_execute_dft_c2r(u->inverse_plan,u->output_window,u->work_buffer); + + /* + //uncenter the data + for(size_t j=0;jwork_buffer[j]; + u->work_buffer[j]=u->work_buffer[j+u->fft_size-w_mid]; + u->work_buffer[j+w_mid]=tmp; + } + */ + /* + //divide out fft gain (more stable here?) + for(size_t j=0;jwindow_size;++j){ + u->work_buffer[j]/=u->fft_size; + } + */ + /* + //debug: tests overlaping add + //and negates ALL PREVIOUS processing + //yields a perfect reconstruction if COLA is held + for(size_t j=0;jwindow_size;++j){ + u->work_buffer[j]=u->W[j]*u->input[c][j]; + } + */ + /* + //debug: tests if basic buffering works + //shouldn't modify the signal AT ALL + for(size_t j=0;jwindow_size;++j){ + u->work_buffer[j]=u->input[c][j]; + } + */ + + /* + //overlap add and preserve overlap component from this window (zero phase) + for(size_t j=0;joverlap_size;++j){ + u->work_buffer[j]+=u->overlap_accum[c][j]; + u->overlap_accum[c][j]=u->work_buffer[u->window_size-u->overlap_size+j]; + } + */ + //overlap add and preserve overlap component from this window (linear phase) + for(size_t j=0;joverlap_size;++j){ + u->work_buffer[j]+=u->overlap_accum[c][j]; + u->overlap_accum[c][j]=u->work_buffer[u->window_size-u->overlap_size+j]; + } + + //preseve the needed input for the next windows overlap + memmove(u->input[c],u->input[c]+u->overlap_size,(u->window_size-u->overlap_size)*sizeof(float)); + //output the samples that are outputable now + pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c, fs, u->work_buffer, sizeof(float),n_outputable); + //buffer the rest of them + memcpy(u->output_buffer[c]+u->n_buffered_output,u->work_buffer+n_outputable,sample_rem*sizeof(float)); + } + /* + clock_gettime(CLOCK_MONOTONIC, &end); + elapsed=time_diff(&end, &start); + pa_log("processed: %ld, time: %ld",u->samples_gathered,elapsed); + */ + u->n_buffered_output+=sample_rem; + u->samples_gathered=0; + + + //pa_log("%ld samples queued",u->n_buffered_output); + + pa_memblock_release(chunk->memblock); + + + return 0; +} + +/* Called from I/O thread context */ +static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) { + struct userdata *u; + size_t amount = 0; + + pa_sink_input_assert_ref(i); + pa_assert_se(u = i->userdata); + + if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state)) + return; + + if (u->sink->thread_info.rewind_nbytes > 0) { + size_t max_rewrite; + + max_rewrite = nbytes + pa_memblockq_get_length(u->memblockq); + amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite); + u->sink->thread_info.rewind_nbytes = 0; + + if (amount > 0) { + pa_memblockq_seek(u->memblockq, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE); + pa_log_debug("Resetting equalizer"); + } + } + + pa_sink_process_rewind(u->sink, amount); + pa_memblockq_rewind(u->memblockq, nbytes); +} + +/* Called from I/O thread context */ +static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) { + struct userdata *u; + + pa_sink_input_assert_ref(i); + pa_assert_se(u = i->userdata); + + if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) + return; + + pa_memblockq_set_maxrewind(u->memblockq, nbytes); + pa_sink_set_max_rewind_within_thread(u->sink, nbytes); +} + +/* Called from I/O thread context */ +static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) { + struct userdata *u; + + pa_sink_input_assert_ref(i); + pa_assert_se(u = i->userdata); + + if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) + return; + + pa_sink_set_max_request_within_thread(u->sink, nbytes); +} + +/* Called from I/O thread context */ +static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) { + struct userdata *u; + + pa_sink_input_assert_ref(i); + pa_assert_se(u = i->userdata); + + if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) + return; + + pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); +} + +/* Called from I/O thread context */ +static void sink_input_detach_cb(pa_sink_input *i) { + struct userdata *u; + + pa_sink_input_assert_ref(i); + pa_assert_se(u = i->userdata); + + if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) + return; + + pa_sink_detach_within_thread(u->sink); + pa_sink_set_asyncmsgq(u->sink, NULL); + pa_sink_set_rtpoll(u->sink, NULL); +} + +/* Called from I/O thread context */ +static void sink_input_attach_cb(pa_sink_input *i) { + struct userdata *u; + + pa_sink_input_assert_ref(i); + pa_assert_se(u = i->userdata); + + if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) + return; + + pa_sink_set_asyncmsgq(u->sink, i->sink->asyncmsgq); + pa_sink_set_rtpoll(u->sink, i->sink->rtpoll); + pa_sink_attach_within_thread(u->sink); + + pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->master->thread_info.max_latency); +} + +/* Called from main context */ +static void sink_input_kill_cb(pa_sink_input *i) { + struct userdata *u; + + pa_sink_input_assert_ref(i); + pa_assert_se(u = i->userdata); + + pa_sink_unlink(u->sink); + pa_sink_input_unlink(u->sink_input); + + pa_sink_unref(u->sink); + u->sink = NULL; + pa_sink_input_unref(u->sink_input); + u->sink_input = NULL; + + pa_module_unload_request(u->module, TRUE); +} + +/* Called from IO thread context */ +static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) { + struct userdata *u; + + pa_sink_input_assert_ref(i); + pa_assert_se(u = i->userdata); + + /* If we are added for the first time, ask for a rewinding so that + * we are heard right-away. */ + if (PA_SINK_INPUT_IS_LINKED(state) && + i->thread_info.state == PA_SINK_INPUT_INIT) { + pa_log_debug("Requesting rewind due to state change."); + pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE); + } +} + +/* Called from main context */ +static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) { + struct userdata *u; + + pa_sink_input_assert_ref(i); + pa_assert_se(u = i->userdata); + + return u->sink != dest; +} + +int pa__init(pa_module*m) { + struct userdata *u; + pa_sample_spec ss; + pa_channel_map map; + pa_modargs *ma; + const char *z; + pa_sink *master; + pa_sink_input_new_data sink_input_data; + pa_sink_new_data sink_data; + pa_bool_t *use_default = NULL; + size_t fs; + + pa_assert(m); + + if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { + pa_log("Failed to parse module arguments."); + goto fail; + } + + if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) { + pa_log("Master sink not found"); + goto fail; + } + + ss = master->sample_spec; + ss.format = PA_SAMPLE_FLOAT32; + map = master->channel_map; + if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) { + pa_log("Invalid sample format specification or channel map"); + goto fail; + } + fs=pa_frame_size(&ss); + + u = pa_xnew0(struct userdata, 1); + u->core = m->core; + u->module = m; + m->userdata = u; + u->master = master; + u->sink = NULL; + u->sink_input = NULL; + u->memblockq = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH, 0, fs, 1, 1, 0, NULL); + + //u->fft_size=44100; + //u->fft_size=48000; + //u->fft_size=1024; + u->channels=ss.channels; + u->fft_size=pow(2,ceil(log(ss.rate)/log(2))); + //u->fft_size=ss.rate; + //u->fft_size=65536; + pa_log("fft size: %ld",u->fft_size); + u->window_size=8001; + u->overlap_size=(u->window_size+1)/2; + //u->overlap_size=u->window_size/2; + //u->overlap_size=0; + u->samples_gathered=0; + u->n_buffered_output=0; + u->max_output=pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss); + u->H=(float*) fftwf_malloc((u->fft_size/2+1)*sizeof(float)); + u->W=(float*) fftwf_malloc((u->window_size)*sizeof(float)); + u->work_buffer=(float*) fftwf_malloc(u->fft_size*sizeof(float)); + u->input=(float **)malloc(sizeof(float *)*u->channels); + u->overlap_accum=(float **)malloc(sizeof(float *)*u->channels); + u->output_buffer=(float **)malloc(sizeof(float *)*u->channels); + for(size_t c=0;cchannels;++c){ + u->input[c]=(float*) fftwf_malloc(u->window_size*sizeof(float)); + memset(u->input[c],0,u->window_size*sizeof(float)); + u->overlap_accum[c]=(float*) fftwf_malloc(u->overlap_size*sizeof(float)); + memset(u->overlap_accum[c],0,u->overlap_size*sizeof(float)); + u->output_buffer[c]=(float*) fftwf_malloc(u->window_size*sizeof(float)); + } + u->output_window = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * (u->fft_size/2+1)); + u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_ESTIMATE); + u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE); + + /* + //rectangular window + for(size_t j=0;jwindow_size;++j){ + u->W[j]=1.0; + } + */ + //hanning_normalized_window(u->W,u->window_size); + hanning_window(u->W,u->window_size); + //sin_window(u->W,u->window_size); + array_out("/home/jason/window.txt",u->W,u->window_size); + //u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->input, u->output_window, FFTW_ESTIMATE); + //u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE); + //u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->input, u->output, FFTW_MEASURE); + //u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output, u->input, FFTW_MEASURE); + const int freqs[]={0,25,50,100,200,300,400,800,1500, + 2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000, + 13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX}; + const float coefficients[]={1,1,1,1,1,1,1,1,1,1, + 1,1,1,1,1,1,1,1, + 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; + const size_t ncoefficients=sizeof(coefficients)/sizeof(float); + pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float)); + float *freq_translated=(float *) malloc(sizeof(float)*(ncoefficients)); + freq_translated[0]=1; + //Translate the frequencies in their natural sampling rate to the new sampling rate frequencies + for(size_t i=1;ifft_size)/ss.rate; + //pa_log("i: %ld: %d , %g",i,freqs[i],freq_translated[i]); + pa_assert_se(freq_translated[i]>=freq_translated[i-1]); + } + freq_translated[ncoefficients-1]=DBL_MAX; + //Interpolate the specified frequency band values + u->H[0]=1; + for(size_t i=1,j=0;i<(u->fft_size/2+1);++i){ + pa_assert_se(j=DBL_MAX){ + for(;i<(u->fft_size/2+1);++i){ + u->H[i]=coefficients[j]; + } + break; + } + //pa_log("i: %d, j: %d, freq: %f",i,j,freq_translated[j]); + //pa_log("interp: %0.4f %0.4f",freq_translated[j],freq_translated[j+1]); + pa_assert_se(freq_translated[j]=freq_translated[j]); + pa_assert_se(i<=freq_translated[j+1]); + //bilinear-inerpolation of coefficients specified + float c0=(i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]); + pa_assert_se(c0>=0&&c0<=1.0); + u->H[i]=((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]); + pa_assert_se(u->H[i]>0); + while(i>=floor(freq_translated[j+1])){ + j++; + } + } + array_out("/home/jason/coffs.txt",u->H,u->fft_size/2+1); + //divide out the fft gain + for(int i=0;i<(u->fft_size/2+1);++i){ + u->H[i]/=u->fft_size; + } + free(freq_translated); + + /* Create sink */ + pa_sink_new_data_init(&sink_data); + sink_data.driver = __FILE__; + sink_data.module = m; + if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL)))) + sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name); + sink_data.namereg_fail = FALSE; + pa_sink_new_data_set_sample_spec(&sink_data, &ss); + pa_sink_new_data_set_channel_map(&sink_data, &map); + z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION); + pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer"); + pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name); + pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter"); + + if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) { + pa_log("Invalid properties"); + pa_sink_new_data_done(&sink_data); + goto fail; + } + + u->sink = pa_sink_new(m->core, &sink_data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY); + pa_sink_new_data_done(&sink_data); + + if (!u->sink) { + pa_log("Failed to create sink."); + goto fail; + } + + u->sink->parent.process_msg = sink_process_msg; + u->sink->set_state = sink_set_state; + u->sink->update_requested_latency = sink_update_requested_latency; + u->sink->request_rewind = sink_request_rewind; + u->sink->userdata = u; + + pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq); + pa_sink_set_rtpoll(u->sink, master->rtpoll); + + /* Create sink input */ + pa_sink_input_new_data_init(&sink_input_data); + sink_input_data.driver = __FILE__; + sink_input_data.module = m; + sink_input_data.sink = u->master; + pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream"); + pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter"); + pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss); + pa_sink_input_new_data_set_channel_map(&sink_input_data, &map); + + pa_sink_input_new(&u->sink_input, m->core, &sink_input_data, PA_SINK_INPUT_DONT_MOVE); + pa_sink_input_new_data_done(&sink_input_data); + + if (!u->sink_input) + goto fail; + + u->sink_input->pop = sink_input_pop_cb; + u->sink_input->process_rewind = sink_input_process_rewind_cb; + u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb; + u->sink_input->update_max_request = sink_input_update_max_request_cb; + u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb; + u->sink_input->kill = sink_input_kill_cb; + u->sink_input->attach = sink_input_attach_cb; + u->sink_input->detach = sink_input_detach_cb; + u->sink_input->state_change = sink_input_state_change_cb; + u->sink_input->may_move_to = sink_input_may_move_to_cb; + u->sink_input->userdata = u; + + pa_sink_put(u->sink); + pa_sink_input_put(u->sink_input); + + pa_modargs_free(ma); + + pa_xfree(use_default); + + return 0; + +fail: + if (ma) + pa_modargs_free(ma); + + pa_xfree(use_default); + + pa__done(m); + + return -1; +} + +int pa__get_n_used(pa_module *m) { + struct userdata *u; + + pa_assert(m); + pa_assert_se(u = m->userdata); + + return pa_sink_linked_by(u->sink); +} + +void pa__done(pa_module*m) { + struct userdata *u; + + pa_assert(m); + + if (!(u = m->userdata)) + return; + + if (u->sink) { + pa_sink_unlink(u->sink); + pa_sink_unref(u->sink); + } + + if (u->sink_input) { + pa_sink_input_unlink(u->sink_input); + pa_sink_input_unref(u->sink_input); + } + + if (u->memblockq) + pa_memblockq_free(u->memblockq); + + fftwf_destroy_plan(u->inverse_plan); + fftwf_destroy_plan(u->forward_plan); + fftwf_free(u->output_window); + for(size_t c=0;cchannels;++c){ + fftwf_free(u->output_buffer[c]); + fftwf_free(u->overlap_accum[c]); + fftwf_free(u->input[c]); + } + free(u->output_buffer); + free(u->overlap_accum); + free(u->input); + fftwf_free(u->work_buffer); + fftwf_free(u->W); + fftwf_free(u->H); + + pa_xfree(u); +} -- cgit