/*** This file is part of PulseAudio. This module is based off Lennart Poettering's LADSPA sink and swaps out LADSPA functionality for a STFT OLA based digital equalizer. All new work is published under Pulseaudio's original license. Copyright 2009 Jason Newton Original Author: Copyright 2004-2008 Lennart Poettering PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "module-equalizer-sink-symdef.h" PA_MODULE_AUTHOR("Jason Newton"); PA_MODULE_DESCRIPTION(_("General Purpose Equalizer")); PA_MODULE_VERSION(PACKAGE_VERSION); PA_MODULE_LOAD_ONCE(FALSE); PA_MODULE_USAGE(_("sink= ")); #define MEMBLOCKQ_MAXLENGTH (16*1024*1024) struct userdata { pa_core *core; pa_module *module; pa_sink *sink, *master; pa_sink_input *sink_input; size_t channels; size_t fft_size;//length (res) of fft size_t window_size;/* *sliding window size *effectively chooses R */ size_t R;/* the hop size between overlapping windows * the latency of the filter, calculated from window_size * based on constraints of COLA and window function */ size_t samples_gathered; size_t n_buffered_output; size_t max_output; float *H;//frequency response filter (magnitude based) float *W;//windowing function (time domain) float *work_buffer,**input,**overlap_accum,**output_buffer; fftwf_complex *output_window; fftwf_plan forward_plan,inverse_plan; //size_t samplings; pa_memblockq *memblockq; }; static const char* const valid_modargs[] = { "sink_name", "sink_properties", "master", "format", "rate", "channels", "channel_map", NULL }; uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p) { return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) - ((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec); } void hanning_normalized_window(float *W,size_t window_size){ //h = sqrt(2)/2 * (1+cos(t*pi)) ./ sqrt( 1+cos(t*pi).^2 ) float c; for(size_t i=0;iuserdata; switch (code) { case PA_SINK_MESSAGE_GET_LATENCY: { pa_usec_t usec = 0; pa_sample_spec *ss=&u->sink->sample_spec; /* Get the latency of the master sink */ if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0) usec = 0; usec+=pa_bytes_to_usec(u->n_buffered_output*pa_frame_size(ss),ss); /* Add the latency internal to our sink input on top */ usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec); *((pa_usec_t*) data) = usec; return 0; } } return pa_sink_process_msg(o, code, data, offset, chunk); } /* Called from main context */ static int sink_set_state(pa_sink *s, pa_sink_state_t state) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (PA_SINK_IS_LINKED(state) && u->sink_input && PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input))) pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED); return 0; } /* Called from I/O thread context */ static void sink_request_rewind(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); /* Just hand this one over to the master sink */ pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->memblockq), TRUE, FALSE, FALSE); } /* Called from I/O thread context */ static void sink_update_requested_latency(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); /* Just hand this one over to the master sink */ pa_sink_input_set_requested_latency_within_thread( u->sink_input, pa_sink_get_requested_latency_within_thread(s)); } /* Called from I/O thread context */ static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) { struct userdata *u; float *src, *dst; pa_memchunk tchunk; pa_sink_input_assert_ref(i); pa_assert(chunk); pa_assert_se(u = i->userdata); pa_assert_se(u->sink); size_t fs = pa_frame_size(&(u->sink->sample_spec)); size_t ss=pa_sample_size(&(u->sink->sample_spec)); size_t fe = fs/ss; if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state)) return -1; //output any buffered outputs first if(u->n_buffered_output>0){ //pa_log("outputing %ld buffered samples",u->n_buffered_output); chunk->index = 0; size_t n_outputable=PA_MIN(u->n_buffered_output,u->max_output); chunk->length = n_outputable*fs; chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length); pa_memblockq_drop(u->memblockq, chunk->length); dst = (float*) pa_memblock_acquire(chunk->memblock); for(size_t j=0;jchannels;++j){ pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+j, fs, u->output_buffer[j], sizeof(float),n_outputable); memmove(u->output_buffer[j],u->output_buffer[j]+n_outputable,(u->n_buffered_output-n_outputable)*sizeof(float)); } u->n_buffered_output-=n_outputable; pa_memblock_release(chunk->memblock); return 0; } pa_assert_se(u->n_buffered_output==0); //collect the minimum number of samples //TODO figure out a better way of buffering the needed //number of samples, this doesn't seem to work correctly while(u->samples_gathered < u->R){ //render some new fragments to our memblockq size_t desired_samples=PA_MIN(u->R-u->samples_gathered,u->max_output); while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) { pa_memchunk nchunk; pa_sink_render(u->sink, desired_samples*fs, &nchunk); pa_memblockq_push(u->memblockq, &nchunk); pa_memblock_unref(nchunk.memblock); } if(tchunk.length/fs!=desired_samples){ pa_log("got %ld samples, asked for %ld",tchunk.length/fs,desired_samples); } size_t n_samples=PA_MIN(tchunk.length/fs,u->R-u->samples_gathered); //TODO: figure out what to do with rest of the samples when there's too many (rare?) src = (float*) ((uint8_t*) pa_memblock_acquire(tchunk.memblock) + tchunk.index); for (size_t c=0;cchannels;c++) { pa_sample_clamp(PA_SAMPLE_FLOAT32NE,u->input[c]+(u->window_size-u->R)+u->samples_gathered,sizeof(float), src+c, fs, n_samples); } u->samples_gathered+=n_samples; pa_memblock_release(tchunk.memblock); pa_memblock_unref(tchunk.memblock); } //IT should be this guy if we're buffering like how its supposed to //size_t n_outputable=PA_MIN(u->window_size-u->R,u->max_output); //This one takes into account the actual data gathered but then the dsp //stuff is wrong when the buffer "underruns" size_t n_outputable=PA_MIN(u->R,u->max_output); chunk->index=0; chunk->length=n_outputable*fs; chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length); pa_memblockq_drop(u->memblockq, chunk->length); dst = (float*) pa_memblock_acquire(chunk->memblock); pa_assert_se(u->fft_size>=u->window_size); pa_assert_se(u->Rwindow_size); pa_assert_se(u->samples_gathered>=u->R); size_t sample_rem=u->R-n_outputable; //use a linear-phase sliding STFT and overlap-add method (for each channel) for (size_t c=0;cchannels;c++) { ////zero padd the data //memset(u->work_buffer,0,u->fft_size*sizeof(float)); memset(u->work_buffer+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float)); ////window the data for(size_t j=0;jwindow_size;++j){ u->work_buffer[j]=u->W[j]*u->input[c][j]; } //Processing is done here! //do fft //char fname[1024]; //if(u->samplings==200){ // pa_assert_se(0); //} //this iterations input //sprintf(fname,"/home/jason/input%ld-%ld.txt",u->samplings+1,c); //array_out(fname,u->input[c]+(u->window_size-u->R),u->R); fftwf_execute_dft_r2c(u->forward_plan,u->work_buffer,u->output_window); //perform filtering for(size_t j=0;jfft_size/2+1;++j){ u->output_window[j][0]*=u->H[j]; u->output_window[j][1]*=u->H[j]; } ////inverse fft fftwf_execute_dft_c2r(u->inverse_plan,u->output_window,u->work_buffer); //the output for the previous iteration's input //sprintf(fname,"/home/jason/output%ld-%ld.txt",u->samplings,c); //array_out(fname,u->work_buffer,u->window_size); ////debug: tests overlaping add ////and negates ALL PREVIOUS processing ////yields a perfect reconstruction if COLA is held //for(size_t j=0;jwindow_size;++j){ // u->work_buffer[j]=u->W[j]*u->input[c][j]; //} //overlap add and preserve overlap component from this window (linear phase) for(size_t j=0;jR;++j){ u->work_buffer[j]+=u->overlap_accum[c][j]; u->overlap_accum[c][j]=u->work_buffer[u->window_size-u->R+j]; } /* //debug: tests if basic buffering works //shouldn't modify the signal AT ALL for(size_t j=0;jwindow_size;++j){ u->work_buffer[j]=u->input[c][j]; } */ //preseve the needed input for the next windows overlap memmove(u->input[c],u->input[c]+u->R, (u->window_size-u->R)*sizeof(float) ); //output the samples that are outputable now pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c, fs, u->work_buffer, sizeof(float),n_outputable); //buffer the rest of them memcpy(u->output_buffer[c]+u->n_buffered_output,u->work_buffer+n_outputable,sample_rem*sizeof(float)); } //u->samplings++; u->n_buffered_output+=sample_rem; u->samples_gathered=0; pa_memblock_release(chunk->memblock); return 0; } /* Called from I/O thread context */ static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; size_t amount = 0; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state)) return; if (u->sink->thread_info.rewind_nbytes > 0) { size_t max_rewrite; max_rewrite = nbytes + pa_memblockq_get_length(u->memblockq); amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite); u->sink->thread_info.rewind_nbytes = 0; if (amount > 0) { pa_memblockq_seek(u->memblockq, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE); pa_log_debug("Resetting equalizer"); u->n_buffered_output=0; u->samples_gathered=0; } } pa_sink_process_rewind(u->sink, amount); pa_memblockq_rewind(u->memblockq, nbytes); } /* Called from I/O thread context */ static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_memblockq_set_maxrewind(u->memblockq, nbytes); pa_sink_set_max_rewind_within_thread(u->sink, nbytes); } /* Called from I/O thread context */ static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_sink_set_max_request_within_thread(u->sink, nbytes); } /* Called from I/O thread context */ static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); } /* Called from I/O thread context */ static void sink_input_detach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_sink_detach_within_thread(u->sink); pa_sink_set_asyncmsgq(u->sink, NULL); pa_sink_set_rtpoll(u->sink, NULL); } /* Called from I/O thread context */ static void sink_input_attach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_sink_set_asyncmsgq(u->sink, i->sink->asyncmsgq); pa_sink_set_rtpoll(u->sink, i->sink->rtpoll); pa_sink_attach_within_thread(u->sink); pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->master->thread_info.max_latency); } /* Called from main context */ static void sink_input_kill_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_unlink(u->sink); pa_sink_input_unlink(u->sink_input); pa_sink_unref(u->sink); u->sink = NULL; pa_sink_input_unref(u->sink_input); u->sink_input = NULL; pa_module_unload_request(u->module, TRUE); } /* Called from IO thread context */ static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); /* If we are added for the first time, ask for a rewinding so that * we are heard right-away. */ if (PA_SINK_INPUT_IS_LINKED(state) && i->thread_info.state == PA_SINK_INPUT_INIT) { pa_log_debug("Requesting rewind due to state change."); pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE); } } /* Called from main context */ static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); return u->sink != dest; } int pa__init(pa_module*m) { struct userdata *u; pa_sample_spec ss; pa_channel_map map; pa_modargs *ma; const char *z; pa_sink *master; pa_sink_input_new_data sink_input_data; pa_sink_new_data sink_data; pa_bool_t *use_default = NULL; size_t fs; pa_assert(m); if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log("Failed to parse module arguments."); goto fail; } if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) { pa_log("Master sink not found"); goto fail; } ss = master->sample_spec; ss.format = PA_SAMPLE_FLOAT32; map = master->channel_map; if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) { pa_log("Invalid sample format specification or channel map"); goto fail; } fs=pa_frame_size(&ss); u = pa_xnew0(struct userdata, 1); u->core = m->core; u->module = m; m->userdata = u; u->master = master; u->sink = NULL; u->sink_input = NULL; u->memblockq = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH, 0, fs, 1, 1, 0, NULL); //u->samplings=0; u->channels=ss.channels; u->fft_size=pow(2,ceil(log(ss.rate)/log(2))); pa_log("fft size: %ld",u->fft_size); u->window_size=7999; u->R=(u->window_size+1)/2; u->samples_gathered=0; u->n_buffered_output=0; u->max_output=pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss); u->H=(float*) fftwf_malloc((u->fft_size/2+1)*sizeof(float)); u->W=(float*) fftwf_malloc((u->window_size)*sizeof(float)); u->work_buffer=(float*) fftwf_malloc(u->fft_size*sizeof(float)); u->input=(float **)malloc(sizeof(float *)*u->channels); u->overlap_accum=(float **)malloc(sizeof(float *)*u->channels); u->output_buffer=(float **)malloc(sizeof(float *)*u->channels); for(size_t c=0;cchannels;++c){ u->input[c]=(float*) fftwf_malloc(u->window_size*sizeof(float)); pa_assert_se(u->input[c]); memset(u->input[c],0,u->window_size*sizeof(float)); pa_assert_se(u->input[c]); u->overlap_accum[c]=(float*) fftwf_malloc(u->R*sizeof(float)); pa_assert_se(u->overlap_accum[c]); memset(u->overlap_accum[c],0,u->R*sizeof(float)); u->output_buffer[c]=(float*) fftwf_malloc(u->window_size*sizeof(float)); pa_assert_se(u->output_buffer[c]); } u->output_window = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * (u->fft_size/2+1)); u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_ESTIMATE); u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE); /* for(size_t j=0;jwindow_size;++j){ u->W[j]=.5; } */ hanning_window(u->W,u->window_size); const int freqs[]={0,25,50,100,200,300,400,800,1500, 2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000, 13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX}; const float coefficients[]={1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; const size_t ncoefficients=sizeof(coefficients)/sizeof(float); pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float)); float *freq_translated=(float *) malloc(sizeof(float)*(ncoefficients)); freq_translated[0]=1; //Translate the frequencies in their natural sampling rate to the new sampling rate frequencies for(size_t i=1;ifft_size)/ss.rate; //pa_log("i: %ld: %d , %g",i,freqs[i],freq_translated[i]); pa_assert_se(freq_translated[i]>=freq_translated[i-1]); } freq_translated[ncoefficients-1]=FLT_MAX; //Interpolate the specified frequency band values u->H[0]=1; for(size_t i=1,j=0;i<(u->fft_size/2+1);++i){ pa_assert_se(j=FLT_MAX){ for(;i<(u->fft_size/2+1);++i){ u->H[i]=coefficients[j]; } break; } //pa_log("i: %d, j: %d, freq: %f",i,j,freq_translated[j]); //pa_log("interp: %0.4f %0.4f",freq_translated[j],freq_translated[j+1]); pa_assert_se(freq_translated[j]=freq_translated[j]); pa_assert_se(i<=freq_translated[j+1]); //bilinear-inerpolation of coefficients specified float c0=(i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]); pa_assert_se(c0>=0&&c0<=1.0); u->H[i]=((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]); pa_assert_se(u->H[i]>0); while(i>=floor(freq_translated[j+1])){ j++; } } //divide out the fft gain for(size_t i=0;i<(u->fft_size/2+1);++i){ u->H[i]/=u->fft_size; } free(freq_translated); /* Create sink */ pa_sink_new_data_init(&sink_data); sink_data.driver = __FILE__; sink_data.module = m; if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL)))) sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name); sink_data.namereg_fail = FALSE; pa_sink_new_data_set_sample_spec(&sink_data, &ss); pa_sink_new_data_set_channel_map(&sink_data, &map); z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer"); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter"); if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) { pa_log("Invalid properties"); pa_sink_new_data_done(&sink_data); goto fail; } u->sink = pa_sink_new(m->core, &sink_data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY); pa_sink_new_data_done(&sink_data); if (!u->sink) { pa_log("Failed to create sink."); goto fail; } u->sink->parent.process_msg = sink_process_msg; u->sink->set_state = sink_set_state; u->sink->update_requested_latency = sink_update_requested_latency; u->sink->request_rewind = sink_request_rewind; u->sink->userdata = u; pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq); pa_sink_set_rtpoll(u->sink, master->rtpoll); /* Create sink input */ pa_sink_input_new_data_init(&sink_input_data); sink_input_data.driver = __FILE__; sink_input_data.module = m; sink_input_data.sink = u->master; pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream"); pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter"); pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss); pa_sink_input_new_data_set_channel_map(&sink_input_data, &map); pa_sink_input_new(&u->sink_input, m->core, &sink_input_data, PA_SINK_INPUT_DONT_MOVE); pa_sink_input_new_data_done(&sink_input_data); if (!u->sink_input) goto fail; u->sink_input->pop = sink_input_pop_cb; u->sink_input->process_rewind = sink_input_process_rewind_cb; u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb; u->sink_input->update_max_request = sink_input_update_max_request_cb; u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb; u->sink_input->kill = sink_input_kill_cb; u->sink_input->attach = sink_input_attach_cb; u->sink_input->detach = sink_input_detach_cb; u->sink_input->state_change = sink_input_state_change_cb; u->sink_input->may_move_to = sink_input_may_move_to_cb; u->sink_input->userdata = u; pa_sink_put(u->sink); pa_sink_input_put(u->sink_input); pa_modargs_free(ma); pa_xfree(use_default); return 0; fail: if (ma) pa_modargs_free(ma); pa_xfree(use_default); pa__done(m); return -1; } int pa__get_n_used(pa_module *m) { struct userdata *u; pa_assert(m); pa_assert_se(u = m->userdata); return pa_sink_linked_by(u->sink); } void pa__done(pa_module*m) { struct userdata *u; pa_assert(m); if (!(u = m->userdata)) return; if (u->sink) { pa_sink_unlink(u->sink); pa_sink_unref(u->sink); } if (u->sink_input) { pa_sink_input_unlink(u->sink_input); pa_sink_input_unref(u->sink_input); } if (u->memblockq) pa_memblockq_free(u->memblockq); fftwf_destroy_plan(u->inverse_plan); fftwf_destroy_plan(u->forward_plan); fftwf_free(u->output_window); for(size_t c=0;cchannels;++c){ fftwf_free(u->output_buffer[c]); fftwf_free(u->overlap_accum[c]); fftwf_free(u->input[c]); } free(u->output_buffer); free(u->overlap_accum); free(u->input); fftwf_free(u->work_buffer); fftwf_free(u->W); fftwf_free(u->H); pa_xfree(u); }