diff options
| -rw-r--r-- | sbc/sbc.c | 1398 | ||||
| -rw-r--r-- | sbc/sbc.h | 30 | ||||
| -rw-r--r-- | sbc/sbc_math.h | 44 | ||||
| -rw-r--r-- | sbc/sbc_tables.h | 4 | 
4 files changed, 1453 insertions, 23 deletions
| @@ -2,7 +2,9 @@   *   *  Bluetooth low-complexity, subband codec (SBC) library   * - *  Copyright (C) 2004-2007  Marcel Holtmann <marcel@holtmann.org> + *  Copyright (C) 2004-2006  Marcel Holtmann <marcel@holtmann.org> + *  Copyright (C) 2004-2005  Henryk Ploetz <henryk@ploetzli.ch> + *  Copyright (C) 2005-2006  Brad Midgley <bmidgley@xmission.com>   *   *   *  This library is free software; you can redistribute it and/or @@ -21,13 +23,1407 @@   *   */ +/* todo items: + +  use a log2 table for byte integer scale factors calculation (sum log2 results for high and low bytes) +  fill bitpool by 16 bits instead of one at a time in bits allocation/bitpool generation +  port to the dsp  +  don't consume more bytes than passed into the encoder + +*/ +  #ifdef HAVE_CONFIG_H  #include <config.h>  #endif +#include <stdio.h> +#include <errno.h>  #include <stdint.h> +#include <malloc.h> +#include <string.h> +#include <stdlib.h> +#include <sys/types.h> +  #include "sbc_math.h"  #include "sbc_tables.h"  #include "sbc.h" + +#define SBC_SYNCWORD	0x9C + +/* sampling frequency */ +#define SBC_FS_16	0x00 +#define SBC_FS_32	0x01 +#define SBC_FS_44	0x02 +#define SBC_FS_48	0x03 + +/* nrof_blocks */ +#define SBC_NB_4	0x00 +#define SBC_NB_8	0x01 +#define SBC_NB_12	0x02 +#define SBC_NB_16	0x03 + +/* channel mode */ +#define SBC_CM_MONO		0x00 +#define SBC_CM_DUAL_CHANNEL	0x01 +#define SBC_CM_STEREO		0x02 +#define SBC_CM_JOINT_STEREO	0x03 + +/* allocation mode */ +#define SBC_AM_LOUDNESS		0x00 +#define SBC_AM_SNR		0x01 + +/* subbands */ +#define SBC_SB_4	0x00 +#define SBC_SB_8	0x01 + +/* This structure contains an unpacked SBC frame.  +   Yes, there is probably quite some unused space herein */ +struct sbc_frame { +	uint16_t sampling_frequency;	/* in kHz */ +	uint8_t blocks; +	enum { +		MONO		= SBC_CM_MONO, +		DUAL_CHANNEL	= SBC_CM_DUAL_CHANNEL, +		STEREO		= SBC_CM_STEREO, +		JOINT_STEREO	= SBC_CM_JOINT_STEREO +	} channel_mode; +	uint8_t channels; +	enum { +		LOUDNESS	= SBC_AM_LOUDNESS, +		SNR		= SBC_AM_SNR +	} allocation_method; +	uint8_t subbands; +	uint8_t bitpool; +	uint8_t join;				/* bit number x set means joint stereo has been used in subband x */ +	uint8_t scale_factor[2][8];		/* only the lower 4 bits of every element are to be used */ +	uint16_t audio_sample[16][2][8];	/* raw integer subband samples in the frame */ + +	int32_t sb_sample_f[16][2][8]; +	int32_t sb_sample[16][2][8];		/* modified subband samples */ +	int16_t pcm_sample[2][16*8];		/* original pcm audio samples */ +}; + +struct sbc_decoder_state { +	int subbands; +	int32_t V[2][170]; +	int offset[2][16]; +}; + +struct sbc_encoder_state { +	int subbands; +	int32_t X[2][80]; +}; + +/* + * Calculates the CRC-8 of the first len bits in data + */ +static const uint8_t crc_table[256] = { +	0x00, 0x1D, 0x3A, 0x27, 0x74, 0x69, 0x4E, 0x53, +	0xE8, 0xF5, 0xD2, 0xCF, 0x9C, 0x81, 0xA6, 0xBB, +	0xCD, 0xD0, 0xF7, 0xEA, 0xB9, 0xA4, 0x83, 0x9E, +	0x25, 0x38, 0x1F, 0x02, 0x51, 0x4C, 0x6B, 0x76, +	0x87, 0x9A, 0xBD, 0xA0, 0xF3, 0xEE, 0xC9, 0xD4, +	0x6F, 0x72, 0x55, 0x48, 0x1B, 0x06, 0x21, 0x3C, +	0x4A, 0x57, 0x70, 0x6D, 0x3E, 0x23, 0x04, 0x19, +	0xA2, 0xBF, 0x98, 0x85, 0xD6, 0xCB, 0xEC, 0xF1, +	0x13, 0x0E, 0x29, 0x34, 0x67, 0x7A, 0x5D, 0x40, +	0xFB, 0xE6, 0xC1, 0xDC, 0x8F, 0x92, 0xB5, 0xA8, +	0xDE, 0xC3, 0xE4, 0xF9, 0xAA, 0xB7, 0x90, 0x8D, +	0x36, 0x2B, 0x0C, 0x11, 0x42, 0x5F, 0x78, 0x65, +	0x94, 0x89, 0xAE, 0xB3, 0xE0, 0xFD, 0xDA, 0xC7, +	0x7C, 0x61, 0x46, 0x5B, 0x08, 0x15, 0x32, 0x2F, +	0x59, 0x44, 0x63, 0x7E, 0x2D, 0x30, 0x17, 0x0A, +	0xB1, 0xAC, 0x8B, 0x96, 0xC5, 0xD8, 0xFF, 0xE2, +	0x26, 0x3B, 0x1C, 0x01, 0x52, 0x4F, 0x68, 0x75, +	0xCE, 0xD3, 0xF4, 0xE9, 0xBA, 0xA7, 0x80, 0x9D, +	0xEB, 0xF6, 0xD1, 0xCC, 0x9F, 0x82, 0xA5, 0xB8, +	0x03, 0x1E, 0x39, 0x24, 0x77, 0x6A, 0x4D, 0x50, +	0xA1, 0xBC, 0x9B, 0x86, 0xD5, 0xC8, 0xEF, 0xF2, +	0x49, 0x54, 0x73, 0x6E, 0x3D, 0x20, 0x07, 0x1A, +	0x6C, 0x71, 0x56, 0x4B, 0x18, 0x05, 0x22, 0x3F, +	0x84, 0x99, 0xBE, 0xA3, 0xF0, 0xED, 0xCA, 0xD7, +	0x35, 0x28, 0x0F, 0x12, 0x41, 0x5C, 0x7B, 0x66, +	0xDD, 0xC0, 0xE7, 0xFA, 0xA9, 0xB4, 0x93, 0x8E, +	0xF8, 0xE5, 0xC2, 0xDF, 0x8C, 0x91, 0xB6, 0xAB, +	0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43, +	0xB2, 0xAF, 0x88, 0x95, 0xC6, 0xDB, 0xFC, 0xE1, +	0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09, +	0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C, +	0x97, 0x8A, 0xAD, 0xB0, 0xE3, 0xFE, 0xD9, 0xC4 +}; + +static uint8_t sbc_crc8(const uint8_t * data, size_t len) +{ +	uint8_t crc = 0x0f; +	size_t i; +	uint8_t octet; + +	for (i = 0; i < len / 8; i++) +		crc = crc_table[crc ^ data[i]]; + +	octet = data[i]; +	for (i = 0; i < len % 8; i++) { +		char bit = ((octet ^ crc) & 0x80) >> 7; + +		crc = ((crc & 0x7f) << 1) ^ (bit ? 0x1d : 0); + +		octet = octet << 1; +	} + +	return crc; +} + +/* + * Code straight from the spec to calculate the bits array  + * Takes a pointer to the frame in question, a pointer to the bits array and the sampling frequency (as 2 bit integer) + */ +static void sbc_calculate_bits(const struct sbc_frame *frame, int (*bits)[8], uint8_t sf) +{ +	if (frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL) { +		int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice; +		int ch, sb; + +		for (ch = 0; ch < frame->channels; ch++) { +			if (frame->allocation_method == SNR) { +				for (sb = 0; sb < frame->subbands; sb++) { +					bitneed[ch][sb] = frame->scale_factor[ch][sb]; +				} +			} else { +				for (sb = 0; sb < frame->subbands; sb++) { +					if (frame->scale_factor[ch][sb] == 0) { +						bitneed[ch][sb] = -5; +					} else { +						if (frame->subbands == 4) { +							loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb]; +						} else { +							loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb]; +						} +						if (loudness > 0) { +							bitneed[ch][sb] = loudness / 2; +						} else { +							bitneed[ch][sb] = loudness; +						} +					} +				} +			} + +			max_bitneed = 0; +			for (sb = 0; sb < frame->subbands; sb++) { +				if (bitneed[ch][sb] > max_bitneed) +					max_bitneed = bitneed[ch][sb]; +			} + +			bitcount = 0; +			slicecount = 0; +			bitslice = max_bitneed + 1; +			do { +				bitslice--; +				bitcount += slicecount; +				slicecount = 0; +				for (sb = 0; sb < frame->subbands; sb++) { +					if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16)) { +						slicecount++; +					} else if (bitneed[ch][sb] == bitslice + 1) { +						slicecount += 2; +					} +				} +			} while (bitcount + slicecount < frame->bitpool); + +			if (bitcount + slicecount == frame->bitpool) { +				bitcount += slicecount; +				bitslice--; +			} + +			for (sb = 0; sb < frame->subbands; sb++) { +				if (bitneed[ch][sb] < bitslice + 2) { +					bits[ch][sb] = 0; +				} else { +					bits[ch][sb] = bitneed[ch][sb] - bitslice; +					if (bits[ch][sb] > 16) +						bits[ch][sb] = 16; +				} +			} + +			sb = 0; +			while (bitcount < frame->bitpool && sb < frame->subbands) { +				if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) { +					bits[ch][sb]++; +					bitcount++; +				} else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) { +					bits[ch][sb] = 2; +					bitcount += 2; +				} +				sb++; +			} + +			sb = 0; +			while (bitcount < frame->bitpool && sb < frame->subbands) { +				if (bits[ch][sb] < 16) { +					bits[ch][sb]++; +					bitcount++; +				} +				sb++; +			} + +		} + +	} else if (frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO) { +		int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice; +		int ch, sb; + +		if (frame->allocation_method == SNR) { +			for (ch = 0; ch < 2; ch++) { +				for (sb = 0; sb < frame->subbands; sb++) { +					bitneed[ch][sb] = frame->scale_factor[ch][sb]; +				} +			} +		} else { +			for (ch = 0; ch < 2; ch++) { +				for (sb = 0; sb < frame->subbands; sb++) { +					if (frame->scale_factor[ch][sb] == 0) { +						bitneed[ch][sb] = -5; +					} else { +						if (frame->subbands == 4) { +							loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb]; +						} else { +							loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb]; +						} +						if (loudness > 0) { +							bitneed[ch][sb] = loudness / 2; +						} else { +							bitneed[ch][sb] = loudness; +						} +					} +				} +			} +		} + +		max_bitneed = 0; +		for (ch = 0; ch < 2; ch++) { +			for (sb = 0; sb < frame->subbands; sb++) { +				if (bitneed[ch][sb] > max_bitneed) +					max_bitneed = bitneed[ch][sb]; +			} +		} + +		bitcount = 0; +		slicecount = 0; +		bitslice = max_bitneed + 1; +		do { +			bitslice--; +			bitcount += slicecount; +			slicecount = 0; +			for (ch = 0; ch < 2; ch++) { +				for (sb = 0; sb < frame->subbands; sb++) { +					if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16)) { +						slicecount++; +					} else if (bitneed[ch][sb] == bitslice + 1) { +						slicecount += 2; +					} +				} +			} +		} while (bitcount + slicecount < frame->bitpool); +		if (bitcount + slicecount == frame->bitpool) { +			bitcount += slicecount; +			bitslice--; +		} + +		for (ch = 0; ch < 2; ch++) { +			for (sb = 0; sb < frame->subbands; sb++) { +				if (bitneed[ch][sb] < bitslice + 2) { +					bits[ch][sb] = 0; +				} else { +					bits[ch][sb] = bitneed[ch][sb] - bitslice; +					if (bits[ch][sb] > 16) +						bits[ch][sb] = 16; +				} +			} +		} + +		ch = 0; +		sb = 0; +		while ((bitcount < frame->bitpool) && (sb < frame->subbands)) { +			if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) { +				bits[ch][sb]++; +				bitcount++; +			} else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) { +				bits[ch][sb] = 2; +				bitcount += 2; +			} +			if (ch == 1) { +				ch = 0; +				sb++; +			} else { +				ch = 1; +			} +		} + +		ch = 0; +		sb = 0; +		while ((bitcount < frame->bitpool) && (sb < frame->subbands)) { +			if (bits[ch][sb] < 16) { +				bits[ch][sb]++; +				bitcount++; +			} +			if (ch == 1) { +				ch = 0; +				sb++; +			} else { +				ch = 1; +			} +		} + +	} + +} + +/*  + * Unpacks a SBC frame at the beginning of the stream in data, + * which has at most len bytes into frame. + * Returns the length in bytes of the packed frame, or a negative + * value on error. The error codes are: + * + *  -1   Data stream too short + *  -2   Sync byte incorrect + *  -3   CRC8 incorrect + *  -4   Bitpool value out of bounds + */ +static int sbc_unpack_frame(const uint8_t * data, struct sbc_frame *frame, size_t len) +{ +	int consumed; +	/* Will copy the parts of the header that are relevant to crc calculation here */ +	uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; +	int crc_pos = 0; +	int32_t temp; + +	uint8_t sf;		/* sampling_frequency, temporarily needed as array index */ + +	int ch, sb, blk, bit;	/* channel, subband, block and bit standard counters */ +	int bits[2][8];		/* bits distribution */ +	int levels[2][8];	/* levels derived from that */ + +	if (len < 4) +		return -1; + +	if (data[0] != SBC_SYNCWORD) +		return -2; + +	sf = (data[1] >> 6) & 0x03; +	switch (sf) { +	case SBC_FS_16: +		frame->sampling_frequency = 16000; +		break; +	case SBC_FS_32: +		frame->sampling_frequency = 32000; +		break; +	case SBC_FS_44: +		frame->sampling_frequency = 44100; +		break; +	case SBC_FS_48: +		frame->sampling_frequency = 48000; +		break; +	} + +	switch ((data[1] >> 4) & 0x03) { +	case SBC_NB_4: +		frame->blocks = 4; +		break; +	case SBC_NB_8: +		frame->blocks = 8; +		break; +	case SBC_NB_12: +		frame->blocks = 12; +		break; +	case SBC_NB_16: +		frame->blocks = 16; +		break; +	} + +	frame->channel_mode = (data[1] >> 2) & 0x03; +	switch (frame->channel_mode) { +	case MONO: +		frame->channels = 1; +		break; +	case DUAL_CHANNEL:	/* fall-through */ +	case STEREO: +	case JOINT_STEREO: +		frame->channels = 2; +		break; +	} + +	frame->allocation_method = (data[1] >> 1) & 0x01; + +	frame->subbands = (data[1] & 0x01) ? 8 : 4; + +	frame->bitpool = data[2]; + +	if (((frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL) +	     && frame->bitpool > 16 * frame->subbands) +	    || ((frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO) +		&& frame->bitpool > 32 * frame->subbands)) +		return -4; + +	/* data[3] is crc, we're checking it later */ + +	consumed = 32; + +	crc_header[0] = data[1]; +	crc_header[1] = data[2]; +	crc_pos = 16; + +	if (frame->channel_mode == JOINT_STEREO) { +		if (len * 8 < consumed + frame->subbands) +			return -1; + +		frame->join = 0x00; +		for (sb = 0; sb < frame->subbands - 1; sb++) { +			frame->join |= ((data[4] >> (7 - sb)) & 0x01) << sb; +		} +		if (frame->subbands == 4) { +			crc_header[crc_pos / 8] = data[4] & 0xf0; +		} else { +			crc_header[crc_pos / 8] = data[4]; +		} + +		consumed += frame->subbands; +		crc_pos += frame->subbands; +	} + +	if (len * 8 < consumed + (4 * frame->subbands * frame->channels)) +		return -1; + +	for (ch = 0; ch < frame->channels; ch++) { +		for (sb = 0; sb < frame->subbands; sb++) { +			/* FIXME assert(consumed % 4 == 0); */ +			frame->scale_factor[ch][sb] = (data[consumed >> 3] >> (4 - (consumed & 0x7))) & 0x0F; +			crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] << (4 - (crc_pos & 0x7)); + +			consumed += 4; +			crc_pos += 4; +		} +	} + +	if (data[3] != sbc_crc8(crc_header, crc_pos)) +		return -3; + +	sbc_calculate_bits(frame, bits, sf); + +	for (blk = 0; blk < frame->blocks; blk++) { +		for (ch = 0; ch < frame->channels; ch++) { +			for (sb = 0; sb < frame->subbands; sb++) { +				frame->audio_sample[blk][ch][sb] = 0; +				if (bits[ch][sb] == 0) +					continue; + +				for (bit = 0; bit < bits[ch][sb]; bit++) { +					int b;	/* A bit */ +					if (consumed > len * 8) +						return -1; + +					b = (data[consumed >> 3] >> (7 - (consumed & 0x7))) & 0x01; +					frame->audio_sample[blk][ch][sb] |= b << (bits[ch][sb] - bit - 1); + +					consumed++; +				} +			} +		} +	} + +	for (ch = 0; ch < frame->channels; ch++) { +		for (sb = 0; sb < frame->subbands; sb++) { +			levels[ch][sb] = (1 << bits[ch][sb]) - 1; +		} +	} + +	for (blk = 0; blk < frame->blocks; blk++) { +		for (ch = 0; ch < frame->channels; ch++) { +			for (sb = 0; sb < frame->subbands; sb++) { +				if (levels[ch][sb] > 0) { +					frame->sb_sample[blk][ch][sb] =  +						(((frame->audio_sample[blk][ch][sb] << 16) | 0x8000) / levels[ch][sb]) - 0x8000;  + +					frame->sb_sample[blk][ch][sb] >>= 3; +					frame->sb_sample[blk][ch][sb] = (frame->sb_sample[blk][ch][sb] << (frame->scale_factor[ch][sb] + 1)); // Q13  + +				} else { +					frame->sb_sample[blk][ch][sb] = 0; +				} +			} +		} +	} + +	if (frame->channel_mode == JOINT_STEREO) { +		for (blk = 0; blk < frame->blocks; blk++) { +			for (sb = 0; sb < frame->subbands; sb++) { +				if (frame->join & (0x01 << sb)) { +					temp = frame->sb_sample[blk][0][sb] + frame->sb_sample[blk][1][sb]; +					frame->sb_sample[blk][1][sb] = frame->sb_sample[blk][0][sb] - frame->sb_sample[blk][1][sb]; +					frame->sb_sample[blk][0][sb] = temp; +				} +			} +		} +	} + +	if ((consumed & 0x7) != 0) +		consumed += 8 - (consumed & 0x7); + +	 +	return consumed >> 3; +} + +static void sbc_decoder_init(struct sbc_decoder_state *state, const struct sbc_frame *frame) +{ +	int i, ch; + +	memset(state->V, 0, sizeof(state->V)); +	state->subbands = frame->subbands; + +	for (ch = 0; ch < 2; ch++) +		for (i = 0; i < frame->subbands * 2; i++) +			state->offset[ch][i] = (10 * i + 10); +} + +static inline void sbc_synthesize_four(struct sbc_decoder_state *state, +				struct sbc_frame *frame, int ch, int blk) +{ +	int i, j, k, idx; +	sbc_extended_t res; + +	for(i = 0; i < 8; i++) { +		/* Shifting */ +		state->offset[ch][i]--; +		if(state->offset[ch][i] < 0) { +			state->offset[ch][i] = 79; +			for(j = 0; j < 9; j++) { +				state->V[ch][j+80] = state->V[ch][j]; +			} +		} +	} +	 + +	for(i = 0; i < 8; i++) { +		/* Distribute the new matrix value to the shifted position */ +		SBC_FIXED_0(res); +		for (j = 0; j < 4; j++) { +			MULA(res, synmatrix4[i][j], frame->sb_sample[blk][ch][j]); +		} +		state->V[ch][state->offset[ch][i]] = SCALE4_STAGED1(res); +	} + +	/* Compute the samples */ +	for(idx = 0, i = 0; i < 4; i++) { +		k = (i + 4) & 0xf; +		SBC_FIXED_0(res); +		for(j = 0; j < 10; idx++) { +		MULA(res, state->V[ch][state->offset[ch][i]+j++], sbc_proto_4_40m0[idx]); +			MULA(res, state->V[ch][state->offset[ch][k]+j++], sbc_proto_4_40m1[idx]); +		} +		/* Store in output */ +		frame->pcm_sample[ch][blk * 4 + i] = SCALE4_STAGED2(res); // Q0 +	} +} + +static inline void sbc_synthesize_eight(struct sbc_decoder_state *state, +				struct sbc_frame *frame, int ch, int blk) +{ +	int i, j, k, idx; +	sbc_extended_t res; + +	for(i = 0; i < 16; i++) { +		/* Shifting */ +		state->offset[ch][i]--; +		if(state->offset[ch][i] < 0) { +			state->offset[ch][i] = 159; +			for(j = 0; j < 9; j++) { +				state->V[ch][j+160] = state->V[ch][j];  +			} +		} +	} + +	for(i = 0; i < 16; i++) { +		/* Distribute the new matrix value to the shifted position */ +		SBC_FIXED_0(res); +		for (j = 0; j < 8; j++) { +			MULA(res, synmatrix8[i][j], frame->sb_sample[blk][ch][j]); // Q28 = Q15 * Q13 +		} +		state->V[ch][state->offset[ch][i]] = SCALE8_STAGED1(res); // Q10 +	} +	 + +	/* Compute the samples */ +	for(idx = 0, i = 0; i < 8; i++) { +		k = (i + 8) & 0xf; +		SBC_FIXED_0(res); +		for(j = 0; j < 10; idx++) { +			MULA(res, state->V[ch][state->offset[ch][i]+j++], sbc_proto_8_80m0[idx]); +			MULA(res, state->V[ch][state->offset[ch][k]+j++], sbc_proto_8_80m1[idx]); +		} +		/* Store in output */ +		frame->pcm_sample[ch][blk * 8 + i] = SCALE8_STAGED2(res); // Q0 + +	} +} + +static int sbc_synthesize_audio(struct sbc_decoder_state *state, struct sbc_frame *frame) +{ +	int ch, blk; +	 +	switch (frame->subbands) { +	case 4: +		for (ch = 0; ch < frame->channels; ch++) { +			for (blk = 0; blk < frame->blocks; blk++) +				sbc_synthesize_four(state, frame, ch, blk); +		} +		return frame->blocks * 4; + +	case 8: +		for (ch = 0; ch < frame->channels; ch++) { +			for (blk = 0; blk < frame->blocks; blk++) +				sbc_synthesize_eight(state, frame, ch, blk); +		} +		return frame->blocks * 8; + +	default: +		return -EIO; +	} +} + +static void sbc_encoder_init(struct sbc_encoder_state *state, const struct sbc_frame *frame) +{ +	memset(&state->X, 0, sizeof(state->X)); +	state->subbands = frame->subbands; +} + +static inline void _sbc_analyze_four(const int32_t *in, int32_t *out) +{ + +	sbc_extended_t res; +	sbc_extended_t t[8]; + +	out[0] = out[1] = out[2] = out[3] = 0; + +	MUL(res, _sbc_proto_4[0], (in[8] - in[32])); // Q18 +	MULA(res, _sbc_proto_4[1], (in[16] - in[24])); +	t[0] = SCALE4_STAGE1(res); // Q8 + +	MUL(res, _sbc_proto_4[2], in[1]); +	MULA(res, _sbc_proto_4[3], in[9]); +	MULA(res, _sbc_proto_4[4], in[17]); +	MULA(res, _sbc_proto_4[5], in[25]); +	MULA(res, _sbc_proto_4[6], in[33]); +	t[1] = SCALE4_STAGE1(res); + +	MUL(res, _sbc_proto_4[7], in[2]); +	MULA(res, _sbc_proto_4[8], in[10]); +	MULA(res, _sbc_proto_4[9], in[18]); +	MULA(res, _sbc_proto_4[10], in[26]); +	MULA(res, _sbc_proto_4[11], in[34]); +	t[2] = SCALE4_STAGE1(res); + +	MUL(res, _sbc_proto_4[12], in[3]); +	MULA(res, _sbc_proto_4[13], in[11]); +	MULA(res, _sbc_proto_4[14], in[19]); +	MULA(res, _sbc_proto_4[15], in[27]); +	MULA(res, _sbc_proto_4[16], in[35]); +	t[3] = SCALE4_STAGE1(res); + +	MUL(res, _sbc_proto_4[17], in[4]); +	MULA(res, _sbc_proto_4[18], (in[12] + in[28])); +	MULA(res, _sbc_proto_4[19], in[20]); +	MULA(res, _sbc_proto_4[17], in[36]); +	t[4] = SCALE4_STAGE1(res); + +	MUL(res, _sbc_proto_4[16], in[5]); +	MULA(res, _sbc_proto_4[15], in[13]); +	MULA(res, _sbc_proto_4[14], in[21]); +	MULA(res, _sbc_proto_4[13], in[29]); +	MULA(res, _sbc_proto_4[12], in[37]); +	t[5] = SCALE4_STAGE1(res); + +	MUL(res, _sbc_proto_4[11], in[6]); +	MULA(res, _sbc_proto_4[10], in[14]); +	MULA(res, _sbc_proto_4[9], in[22]); +	MULA(res, _sbc_proto_4[8], in[30]); +	MULA(res, _sbc_proto_4[7], in[38]); +	t[6] = SCALE4_STAGE1(res); + +	MUL(res, _sbc_proto_4[6], in[7]); +	MULA(res, _sbc_proto_4[5], in[15]); +	MULA(res, _sbc_proto_4[4], in[23]); +	MULA(res, _sbc_proto_4[3], in[31]); +	MULA(res, _sbc_proto_4[2], in[39]); +	t[7] = SCALE4_STAGE1(res); + +	MUL(res, _anamatrix4[0], t[0]); +	MULA(res, _anamatrix4[1], t[1]); +	MULA(res, _anamatrix4[2], t[2]); +	MULA(res, _anamatrix4[1], t[3]); +	MULA(res, _anamatrix4[0], t[4]); +	MULA(res, _anamatrix4[3], t[5]); +	MULA(res, -_anamatrix4[3], t[7]); +	out[0] = SCALE4_STAGE2(res); // Q0 +	 +	MUL(res, -_anamatrix4[0], t[0]); +	MULA(res, _anamatrix4[3], t[1]); +	MULA(res, _anamatrix4[2], t[2]); +	MULA(res, _anamatrix4[3], t[3]); +	MULA(res, -_anamatrix4[0], t[4]); +	MULA(res, -_anamatrix4[1], t[5]); +	MULA(res, _anamatrix4[1], t[7]); +	out[1] = SCALE4_STAGE2(res); + + +	MUL(res, -_anamatrix4[0], t[0]); +	MULA(res, -_anamatrix4[3], t[1]); +	MULA(res, _anamatrix4[2], t[2]); +	MULA(res, -_anamatrix4[3], t[3]); +	MULA(res, -_anamatrix4[0], t[4]); +	MULA(res, _anamatrix4[1], t[5]); +	MULA(res, -_anamatrix4[1], t[7]); +	out[2] = SCALE4_STAGE2(res); + +	MUL(res, _anamatrix4[0], t[0]); +	MULA(res, -_anamatrix4[1], t[1]); +	MULA(res, _anamatrix4[2], t[2]); +	MULA(res, -_anamatrix4[1], t[3]); +	MULA(res, _anamatrix4[0], t[4]); +	MULA(res, -_anamatrix4[3], t[5]); +	MULA(res, _anamatrix4[3], t[7]); +	out[3] = SCALE4_STAGE2(res); +} +static inline void sbc_analyze_four(struct sbc_encoder_state *state, +				struct sbc_frame *frame, int ch, int blk) +{ +	int i; +	/* Input 4 New Audio Samples */ +	for (i = 39; i >= 4; i--) +		state->X[ch][i] = state->X[ch][i - 4]; +	for (i = 3; i >= 0; i--) +		state->X[ch][i] = frame->pcm_sample[ch][blk * 4 + (3 - i)]; +	_sbc_analyze_four(state->X[ch], frame->sb_sample_f[blk][ch]); +} + +static inline void _sbc_analyze_eight(const int32_t *in, int32_t *out) +{ +	sbc_extended_t res; +	sbc_extended_t t[8]; + +	out[0] = out[1] = out[2] = out[3] = out[4] = out[5] = out[6] = out[7] = 0; +	 +	MUL(res,  _sbc_proto_8[0], (in[16] - in[64])); // Q18 = Q18 * Q0 +	MULA(res, _sbc_proto_8[1], (in[32] - in[48])); +	MULA(res, _sbc_proto_8[2], in[4]); +	MULA(res, _sbc_proto_8[3], in[20]); +	MULA(res, _sbc_proto_8[4], in[36]); +	MULA(res, _sbc_proto_8[5], in[52]); +	t[0] = SCALE8_STAGE1(res); // Q10 + +	MUL(res,   _sbc_proto_8[6], in[2]); +	MULA(res,  _sbc_proto_8[7], in[18]); +	MULA(res,  _sbc_proto_8[8], in[34]); +	MULA(res,  _sbc_proto_8[9], in[50]); +	MULA(res, _sbc_proto_8[10], in[66]); +	t[1] = SCALE8_STAGE1(res); + +	MUL(res,  _sbc_proto_8[11], in[1]); +	MULA(res, _sbc_proto_8[12], in[17]); +	MULA(res, _sbc_proto_8[13], in[33]); +	MULA(res, _sbc_proto_8[14], in[49]); +	MULA(res, _sbc_proto_8[15], in[65]); +	MULA(res, _sbc_proto_8[16], in[3]); +	MULA(res, _sbc_proto_8[17], in[19]); +	MULA(res, _sbc_proto_8[18], in[35]); +	MULA(res, _sbc_proto_8[19], in[51]); +	MULA(res, _sbc_proto_8[20], in[67]); +	t[2] = SCALE8_STAGE1(res); + +	MUL(res,   _sbc_proto_8[21], in[5]); +	MULA(res,  _sbc_proto_8[22], in[21]); +	MULA(res,  _sbc_proto_8[23], in[37]); +	MULA(res,  _sbc_proto_8[24], in[53]); +	MULA(res,  _sbc_proto_8[25], in[69]); +	MULA(res, -_sbc_proto_8[15], in[15]); +	MULA(res, -_sbc_proto_8[14], in[31]); +	MULA(res, -_sbc_proto_8[13], in[47]); +	MULA(res, -_sbc_proto_8[12], in[63]); +	MULA(res, -_sbc_proto_8[11], in[79]); +	t[3] = SCALE8_STAGE1(res); + +	MUL(res,   _sbc_proto_8[26], in[6]); +	MULA(res,  _sbc_proto_8[27], in[22]); +	MULA(res,  _sbc_proto_8[28], in[38]); +	MULA(res,  _sbc_proto_8[29], in[54]); +	MULA(res,  _sbc_proto_8[30], in[70]); +	MULA(res, -_sbc_proto_8[10], in[14]); +	MULA(res,  -_sbc_proto_8[9], in[30]); +	MULA(res,  -_sbc_proto_8[8], in[46]); +	MULA(res,  -_sbc_proto_8[7], in[62]); +	MULA(res,  -_sbc_proto_8[6], in[78]); +	t[4] = SCALE8_STAGE1(res); + +	MUL(res,   _sbc_proto_8[31], in[7]); +	MULA(res,  _sbc_proto_8[32], in[23]); +	MULA(res,  _sbc_proto_8[33], in[39]); +	MULA(res,  _sbc_proto_8[34], in[55]); +	MULA(res,  _sbc_proto_8[35], in[71]); +	MULA(res, -_sbc_proto_8[20], in[13]); +	MULA(res, -_sbc_proto_8[19], in[29]); +	MULA(res, -_sbc_proto_8[18], in[45]); +	MULA(res, -_sbc_proto_8[17], in[61]); +	MULA(res, -_sbc_proto_8[16], in[77]); +	t[5] = SCALE8_STAGE1(res); + +	MUL(res,   _sbc_proto_8[36], (in[8] + in[72])); +	MULA(res,  _sbc_proto_8[37], in[24]); +	MULA(res,  _sbc_proto_8[38], in[40]); +	MULA(res,  _sbc_proto_8[37], in[56]); +	MULA(res, -_sbc_proto_8[39], in[12]); +	MULA(res,  -_sbc_proto_8[5], in[28]); +	MULA(res,  -_sbc_proto_8[4], in[44]); +	MULA(res,  -_sbc_proto_8[3], in[60]); +	MULA(res,  -_sbc_proto_8[2], in[76]); +	t[6] = SCALE8_STAGE1(res); + +	MUL(res,   _sbc_proto_8[35], in[9]); +	MULA(res,  _sbc_proto_8[34], in[25]); +	MULA(res,  _sbc_proto_8[33], in[41]); +	MULA(res,  _sbc_proto_8[32], in[57]); +	MULA(res,  _sbc_proto_8[31], in[73]); +	MULA(res, -_sbc_proto_8[25], in[11]); +	MULA(res, -_sbc_proto_8[24], in[27]); +	MULA(res, -_sbc_proto_8[23], in[43]); +	MULA(res, -_sbc_proto_8[22], in[59]); +	MULA(res, -_sbc_proto_8[21], in[75]); +	t[7] = SCALE8_STAGE1(res); + +	MUL(res, _anamatrix8[0], t[0]); // = Q14 * Q10 +	MULA(res, _anamatrix8[7], t[1]); +	MULA(res, _anamatrix8[2], t[2]); +	MULA(res, _anamatrix8[3], t[3]); +	MULA(res, _anamatrix8[6], t[4]); +	MULA(res, _anamatrix8[4], t[5]); +	MULA(res, _anamatrix8[1], t[6]); +	MULA(res, _anamatrix8[5], t[7]); +	out[0] = SCALE8_STAGE2(res); // Q0 + +	MUL(res, _anamatrix8[1], t[0]); +	MULA(res, _anamatrix8[7], t[1]); +	MULA(res, _anamatrix8[3], t[2]); +	MULA(res, -_anamatrix8[5], t[3]); +	MULA(res, -_anamatrix8[6], t[4]); +	MULA(res, -_anamatrix8[2], t[5]); +	MULA(res, -_anamatrix8[0], t[6]); +	MULA(res, -_anamatrix8[4], t[7]); +	out[1] = SCALE8_STAGE2(res); + +	MUL(res, -_anamatrix8[1], t[0]); +	MULA(res, _anamatrix8[7], t[1]); +	MULA(res, _anamatrix8[4], t[2]); +	MULA(res, -_anamatrix8[2], t[3]); +	MULA(res, -_anamatrix8[6], t[4]); +	MULA(res, _anamatrix8[5], t[5]); +	MULA(res, _anamatrix8[0], t[6]); +	MULA(res, _anamatrix8[3], t[7]); +	out[2] = SCALE8_STAGE2(res); + +	MUL(res, -_anamatrix8[0], t[0]); +	MULA(res, _anamatrix8[7], t[1]); +	MULA(res, _anamatrix8[5], t[2]); +	MULA(res, -_anamatrix8[4], t[3]); +	MULA(res, _anamatrix8[6], t[4]); +	MULA(res, _anamatrix8[3], t[5]); +	MULA(res, -_anamatrix8[1], t[6]); +	MULA(res, -_anamatrix8[2], t[7]); +	out[3] = SCALE8_STAGE2(res); + +	MUL(res, -_anamatrix8[0], t[0]); +	MULA(res, _anamatrix8[7], t[1]); +	MULA(res, -_anamatrix8[5], t[2]); +	MULA(res, _anamatrix8[4], t[3]); +	MULA(res, _anamatrix8[6], t[4]); +	MULA(res, -_anamatrix8[3], t[5]); +	MULA(res, -_anamatrix8[1], t[6]); +	MULA(res, _anamatrix8[2], t[7]); +	out[4] = SCALE8_STAGE2(res); + +	MUL(res, -_anamatrix8[1], t[0]); +	MULA(res, _anamatrix8[7], t[1]); +	MULA(res, -_anamatrix8[4], t[2]); +	MULA(res, _anamatrix8[2], t[3]); +	MULA(res, -_anamatrix8[6], t[4]); +	MULA(res, -_anamatrix8[5], t[5]); +	MULA(res, _anamatrix8[0], t[6]); +	MULA(res, -_anamatrix8[3], t[7]); +	out[5] = SCALE8_STAGE2(res); + +	MUL(res, _anamatrix8[1], t[0]); +	MULA(res, _anamatrix8[7], t[1]); +	MULA(res, -_anamatrix8[3], t[2]); +	MULA(res, _anamatrix8[5], t[3]); +	MULA(res, -_anamatrix8[6], t[4]); +	MULA(res, _anamatrix8[2], t[5]); +	MULA(res, -_anamatrix8[0], t[6]); +	MULA(res, _anamatrix8[4], t[7]); +	out[6] = SCALE8_STAGE2(res); + +	MUL(res, _anamatrix8[0], t[0]); +	MULA(res, _anamatrix8[7], t[1]); +	MULA(res, -_anamatrix8[2], t[2]); +	MULA(res, -_anamatrix8[3], t[3]); +	MULA(res, _anamatrix8[6], t[4]); +	MULA(res, -_anamatrix8[4], t[5]); +	MULA(res, _anamatrix8[1], t[6]); +	MULA(res, -_anamatrix8[5], t[7]); +	out[7] = SCALE8_STAGE2(res); +} + +static inline void sbc_analyze_eight(struct sbc_encoder_state *state, +				     struct sbc_frame *frame, int ch, int blk) +{ +	int i; + +	/* Input 8 Audio Samples */ +	for (i = 79; i >= 8; i--) +		state->X[ch][i] = state->X[ch][i - 8]; +	for (i = 7; i >= 0; i--) +		state->X[ch][i] = frame->pcm_sample[ch][blk * 8 + (7 - i)]; +	_sbc_analyze_eight(state->X[ch], frame->sb_sample_f[blk][ch]); +} + +static int sbc_analyze_audio(struct sbc_encoder_state *state, struct sbc_frame *frame) +{ +	int ch, blk; + +	switch (frame->subbands) { +	case 4: +		for (ch = 0; ch < frame->channels; ch++) +			for (blk = 0; blk < frame->blocks; blk++) { +				sbc_analyze_four(state, frame, ch, blk); +			} +		return frame->blocks * 4; + +	case 8: +		for (ch = 0; ch < frame->channels; ch++) +			for (blk = 0; blk < frame->blocks; blk++) { +				sbc_analyze_eight(state, frame, ch, blk); +			} +		return frame->blocks * 8; + +	default: +		return -EIO; +	} +} + +/* + * Packs the SBC frame from frame into the memory at data. At most len + * bytes will be used, should more memory be needed an appropriate  + * error code will be returned. Returns the length of the packed frame + * on success or a negative value on error.  + * + * The error codes are: + * -1 Not enough memory reserved + * -2 Unsupported sampling rate + * -3 Unsupported number of blocks + * -4 Unsupported number of subbands + * -5 Bitpool value out of bounds + * -99 not implemented + */ + +static int sbc_pack_frame(uint8_t * data, struct sbc_frame *frame, size_t len) +{ +	int produced; +	/* Will copy the header parts for CRC-8 calculation here */ +	uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; +	int crc_pos = 0; + +	uint8_t sf;		/* Sampling frequency as temporary value for table lookup */ + +	int ch, sb, blk, bit;	/* channel, subband, block and bit counters */ +	int bits[2][8];		/* bits distribution */ +	int levels[2][8];	/* levels are derived from that */ + +	u_int32_t scalefactor[2][8];	/* derived from frame->scale_factor */ + +	if (len < 4) { +		return -1; +	} + +	/* Clear first 4 bytes of data (that's the constant length part of the SBC header) */ +	memset(data, 0, 4); + +	data[0] = SBC_SYNCWORD; + +	if (frame->sampling_frequency == 16000) { +		data[1] |= (SBC_FS_16 & 0x03) << 6; +		sf = SBC_FS_16; +	} else if (frame->sampling_frequency == 32000) { +		data[1] |= (SBC_FS_32 & 0x03) << 6; +		sf = SBC_FS_32; +	} else if (frame->sampling_frequency == 44100) { +		data[1] |= (SBC_FS_44 & 0x03) << 6; +		sf = SBC_FS_44; +	} else if (frame->sampling_frequency == 48000) { +		data[1] |= (SBC_FS_48 & 0x03) << 6; +		sf = SBC_FS_48; +	} else { +		return -2; +	} + +	switch (frame->blocks) { +	case 4: +		data[1] |= (SBC_NB_4 & 0x03) << 4; +		break; +	case 8: +		data[1] |= (SBC_NB_8 & 0x03) << 4; +		break; +	case 12: +		data[1] |= (SBC_NB_12 & 0x03) << 4; +		break; +	case 16: +		data[1] |= (SBC_NB_16 & 0x03) << 4; +		break; +	default: +		return -3; +		break; +	} + +	data[1] |= (frame->channel_mode & 0x03) << 2; + +	data[1] |= (frame->allocation_method & 0x01) << 1; + +	switch (frame->subbands) { +	case 4: +		/* Nothing to do */ +		break; +	case 8: +		data[1] |= 0x01; +		break; +	default: +		return -4; +		break; +	} + +	data[2] = frame->bitpool; +	if (((frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL) +	     && frame->bitpool > 16 * frame->subbands) +	    || ((frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO) +		&& frame->bitpool > 32 * frame->subbands)) { +		return -5; +	} + +	/* Can't fill in crc yet */ + +	produced = 32; + +	crc_header[0] = data[1]; +	crc_header[1] = data[2]; +	crc_pos = 16; + +	for (ch = 0; ch < frame->channels; ch++) { +		for (sb = 0; sb < frame->subbands; sb++) { +			frame->scale_factor[ch][sb] = 0; +			scalefactor[ch][sb] = 2; +			for (blk = 0; blk < frame->blocks; blk++) { +				while (scalefactor[ch][sb] < fabs(frame->sb_sample_f[blk][ch][sb])) { +					frame->scale_factor[ch][sb]++; +					scalefactor[ch][sb] *= 2; +				} +			} +		} +	} + +	if (frame->channel_mode == JOINT_STEREO) { +		int32_t sb_sample_j[16][2][7]; /* like frame->sb_sample but joint stereo */ +		int scalefactor_j[2][7], scale_factor_j[2][7]; /* scalefactor and scale_factor in joint case */ + +		/* Calculate joint stereo signal */ +		for (sb = 0; sb < frame->subbands - 1; sb++) { +			for (blk = 0; blk < frame->blocks; blk++) { +				sb_sample_j[blk][0][sb] = (frame->sb_sample_f[blk][0][sb] +  frame->sb_sample_f[blk][1][sb]) >> 1; +				sb_sample_j[blk][1][sb] = (frame->sb_sample_f[blk][0][sb] -  frame->sb_sample_f[blk][1][sb]) >> 1; +			} +		} + +		/* calculate scale_factor_j and scalefactor_j for joint case */ +		for (ch = 0; ch < 2; ch++) { +			for (sb = 0; sb < frame->subbands - 1; sb++) { +				scale_factor_j[ch][sb] = 0; +				scalefactor_j[ch][sb] = 2; +				for (blk = 0; blk < frame->blocks; blk++) { +					while (scalefactor_j[ch][sb] < fabs(sb_sample_j[blk][ch][sb])) { +						scale_factor_j[ch][sb]++; +						scalefactor_j[ch][sb] *= 2; +					} +				} +			} +		} + +		/* decide which subbands to join */ +		frame->join = 0; +		for (sb = 0; sb < frame->subbands - 1; sb++) { +			if ((scalefactor[0][sb] + scalefactor[1][sb]) > +					(scalefactor_j[0][sb] + scalefactor_j[1][sb]) ) { +				/* use joint stereo for this subband */ +				frame->join |= 1 << sb; +				frame->scale_factor[0][sb] = scale_factor_j[0][sb]; +				frame->scale_factor[1][sb] = scale_factor_j[1][sb]; +				scalefactor[0][sb] = scalefactor_j[0][sb]; +				scalefactor[1][sb] = scalefactor_j[1][sb]; +				for (blk = 0; blk < frame->blocks; blk++) { +					frame->sb_sample_f[blk][0][sb] = sb_sample_j[blk][0][sb]; +					frame->sb_sample_f[blk][1][sb] = sb_sample_j[blk][1][sb]; +				} +			} +		} + +		if (len * 8 < produced + frame->subbands) +			return -1; + +		data[4] = 0; +		for (sb = 0; sb < frame->subbands - 1; sb++) { +			data[4] |= ((frame->join >> sb) & 0x01) << (7 - sb); +		} +		if (frame->subbands == 4) { +			crc_header[crc_pos / 8] = data[4] & 0xf0; +		} else { +			crc_header[crc_pos / 8] = data[4]; +		} +  +		produced += frame->subbands; +		crc_pos += frame->subbands; +	} + +	if (len * 8 < produced + (4 * frame->subbands * frame->channels)) +		return -1; + +	for (ch = 0; ch < frame->channels; ch++) { +		for (sb = 0; sb < frame->subbands; sb++) { +			if (produced % 8 == 0) +				data[produced / 8] = 0; +			data[produced / 8] |= ((frame->scale_factor[ch][sb] & 0x0F) << (4 - (produced % 8))); +			crc_header[crc_pos / 8] |= ((frame->scale_factor[ch][sb] & 0x0F) << (4 - (crc_pos % 8))); + +			produced += 4; +			crc_pos += 4; +		} +	} + +	data[3] = sbc_crc8(crc_header, crc_pos); + +	sbc_calculate_bits(frame, bits, sf); + +	for (ch = 0; ch < frame->channels; ch++) { +		for (sb = 0; sb < frame->subbands; sb++) { +			levels[ch][sb] = (1 << bits[ch][sb]) - 1; +		} +	} + +	for (blk = 0; blk < frame->blocks; blk++) { +		for (ch = 0; ch < frame->channels; ch++) { +			for (sb = 0; sb < frame->subbands; sb++) { +				if (levels[ch][sb] > 0) { +					frame->audio_sample[blk][ch][sb] = +						(uint16_t) ((((frame->sb_sample_f[blk][ch][sb]*levels[ch][sb]) >> (frame->scale_factor[ch][sb] + 1)) + +						levels[ch][sb]) >> 1); +				} else { +					frame->audio_sample[blk][ch][sb] = 0; +				} +			} +		} +	} + +	for (blk = 0; blk < frame->blocks; blk++) { +		for (ch = 0; ch < frame->channels; ch++) { +			for (sb = 0; sb < frame->subbands; sb++) { +				if (bits[ch][sb] != 0) { +					for (bit = 0; bit < bits[ch][sb]; bit++) { +						int b;	/* A bit */ +						if (produced > len * 8) { +							return -1; +						} +						if (produced % 8 == 0) { +							data[produced / 8] = 0; +						} +						b = ((frame->audio_sample[blk][ch][sb]) >> (bits[ch][sb] - bit - +											    1)) & 0x01; +						data[produced / 8] |= b << (7 - (produced % 8)); +						produced++; +					} +				} +			} +		} +	} + +	if (produced % 8 != 0) { +		produced += 8 - (produced % 8); +	} + +	return produced / 8; +} + +struct sbc_priv { +	int init; +	struct sbc_frame frame; +	struct sbc_decoder_state dec_state; +	struct sbc_encoder_state enc_state; +}; + +int sbc_init(sbc_t *sbc, unsigned long flags) +{ +	if (!sbc) +		return -EIO; + +	memset(sbc, 0, sizeof(sbc_t)); + +	sbc->priv = malloc(sizeof(struct sbc_priv)); +	if (!sbc->priv) +		return -ENOMEM; + +	memset(sbc->priv, 0, sizeof(struct sbc_priv)); + +	sbc->rate = 44100; +	sbc->channels = 2; +	sbc->joint = 0; +	sbc->subbands = 8; +	sbc->blocks = 16; +	sbc->bitpool = 32; + +	return 0; +} + +int sbc_decode(sbc_t *sbc, void *data, int count) +{ +	struct sbc_priv *priv; +	char *ptr; +	int i, ch, framelen, samples; + +	if (!sbc) +		return -EIO; + +	priv = sbc->priv; + +	framelen = sbc_unpack_frame(data, &priv->frame, count); +	 + +	if (!priv->init) { +		sbc_decoder_init(&priv->dec_state, &priv->frame); +		priv->init = 1; + +		sbc->rate = priv->frame.sampling_frequency; +		sbc->channels = priv->frame.channels; +		sbc->subbands = priv->frame.subbands; +		sbc->blocks = priv->frame.blocks; +		sbc->bitpool = priv->frame.bitpool; +	} + +	samples = sbc_synthesize_audio(&priv->dec_state, &priv->frame); + +	if (!sbc->data) { +		sbc->size = samples * priv->frame.channels * 2; +		sbc->data = malloc(sbc->size); +	} + +	if (sbc->size < samples * priv->frame.channels * 2) { +		sbc->size = samples * priv->frame.channels * 2; +		sbc->data = realloc(sbc->data, sbc->size); +	} + +	if (!sbc->data) { +		sbc->size = 0; +		return -ENOMEM; +	} + +	ptr = sbc->data; + +	for (i = 0; i < samples; i++) { +		for (ch = 0; ch < priv->frame.channels; ch++) { +			int16_t s; +			s = priv->frame.pcm_sample[ch][i]; +			*ptr++ = (s & 0xff00) >> 8; +			*ptr++ = (s & 0x00ff); +		} +	} + +	sbc->len = samples * priv->frame.channels * 2; + +	return framelen; +} + +int sbc_encode(sbc_t *sbc, void *data, int count) +{ +	struct sbc_priv *priv; +	char *ptr; +	int i, ch, framelen, samples; + +	if (!sbc) +		return -EIO; + +	priv = sbc->priv; + +	if (!priv->init) { +		priv->frame.sampling_frequency = sbc->rate; +		priv->frame.channels = sbc->channels; + +		if (sbc->channels > 1) { +			if (sbc->joint) +				priv->frame.channel_mode = JOINT_STEREO; +			else +				priv->frame.channel_mode = STEREO; +		} else +			priv->frame.channel_mode = MONO; + +		priv->frame.allocation_method = SNR; +		priv->frame.subbands = sbc->subbands; +		priv->frame.blocks = sbc->blocks; +		priv->frame.bitpool = sbc->bitpool; + +		sbc_encoder_init(&priv->enc_state, &priv->frame); +		priv->init = 1; +	} + +	ptr = data; + +	for (i = 0; i < priv->frame.subbands * priv->frame.blocks; i++) { +		for (ch = 0; ch < sbc->channels; ch++) { +			int16_t s = (ptr[0] & 0xff) << 8 | (ptr[1] & 0xff); +			ptr += 2; +			priv->frame.pcm_sample[ch][i] = s; +		} +	} + +	samples = sbc_analyze_audio(&priv->enc_state, &priv->frame); + +	if (!sbc->data) { +		sbc->size = 1024; +		sbc->data = malloc(sbc->size); +	} + +	if (!sbc->data) { +		sbc->size = 0; +		return -ENOMEM; +	} + +	framelen = sbc_pack_frame(sbc->data, &priv->frame, sbc->size); + +	sbc->len = framelen; + +	sbc->duration = (1000000 * priv->frame.subbands * priv->frame.blocks) / sbc->rate; + +	return samples * sbc->channels * 2; +} + +void sbc_finish(sbc_t *sbc) +{ +	if (!sbc) +		return; + +	if (sbc->data) +		free(sbc->data); + +	if (sbc->priv) +		free(sbc->priv); + +	memset(sbc, 0, sizeof(sbc_t)); +} @@ -2,7 +2,9 @@   *   *  Bluetooth low-complexity, subband codec (SBC) library   * - *  Copyright (C) 2004-2007  Marcel Holtmann <marcel@holtmann.org> + *  Copyright (C) 2004-2006  Marcel Holtmann <marcel@holtmann.org> + *  Copyright (C) 2004-2005  Henryk Ploetz <henryk@ploetzli.ch> + *  Copyright (C) 2005-2006  Brad Midgley <bmidgley@xmission.com>   *   *   *  This library is free software; you can redistribute it and/or @@ -28,6 +30,32 @@  extern "C" {  #endif +struct sbc_struct { +	unsigned long flags; + +	int rate; +	int channels; +	int joint; +	int blocks; +	int subbands; +	int bitpool; + +	void *data; +	int size; +	int len; + +	unsigned long duration; + +	void *priv; +}; + +typedef struct sbc_struct sbc_t; + +int sbc_init(sbc_t *sbc, unsigned long flags); +int sbc_decode(sbc_t *sbc, void *data, int count); +int sbc_encode(sbc_t *sbc, void *data, int count); +void sbc_finish(sbc_t *sbc); +  #ifdef __cplusplus  }  #endif diff --git a/sbc/sbc_math.h b/sbc/sbc_math.h index c427bee3..f6247ef8 100644 --- a/sbc/sbc_math.h +++ b/sbc/sbc_math.h @@ -2,7 +2,9 @@   *   *  Bluetooth low-complexity, subband codec (SBC) library   * - *  Copyright (C) 2004-2007  Marcel Holtmann <marcel@holtmann.org> + *  Copyright (C) 2004-2006  Marcel Holtmann <marcel@holtmann.org> + *  Copyright (C) 2004-2005  Henryk Ploetz <henryk@ploetzli.ch> + *  Copyright (C) 2005-2006  Brad Midgley <bmidgley@xmission.com>   *   *   *  This library is free software; you can redistribute it and/or @@ -22,11 +24,12 @@   */  #define fabs(x) ((x) < 0 ? -(x) : (x)) -  /* C does not provide an explicit arithmetic shift right but this will     always be correct and every compiler *should* generate optimal code */  #define ASR(val, bits) ((-2 >> 1 == -1) ? \ -		((int32_t) (val)) >> (bits) : ((int32_t) (val)) / (1 << (bits))) +		 ((int32_t)(val)) >> (bits) : ((int32_t) (val)) / (1 << (bits))) +#define ASR_64(val, bits) ((-2 >> 1 == -1) ? \ +		 ((long long)(val)) >> (bits) : ((long long) (val)) / (1 << (bits)))  #define SCALE_PROTO4_TBL	15  #define SCALE_ANA4_TBL		16 @@ -37,29 +40,30 @@  #define SCALE_NPROTO4_TBL	10  #define SCALE_NPROTO8_TBL	12  #define SCALE_SAMPLES		14 -#define SCALE4_STAGE1_BITS	16 -#define SCALE4_STAGE2_BITS	18 -#define SCALE4_STAGED1_BITS	15 -#define SCALE4_STAGED2_BITS	15 -#define SCALE8_STAGE1_BITS	16 -#define SCALE8_STAGE2_BITS	18 -#define SCALE8_STAGED1_BITS	15 -#define SCALE8_STAGED2_BITS	15 +#define SCALE4_STAGE1_BITS	10  +#define SCALE4_STAGE2_BITS	21  +#define SCALE4_STAGED1_BITS	18 +#define SCALE4_STAGED2_BITS	23 +#define SCALE8_STAGE1_BITS	8 +#define SCALE8_STAGE2_BITS	24  +#define SCALE8_STAGED1_BITS	18 +#define SCALE8_STAGED2_BITS	23   typedef int32_t sbc_fixed_t; +typedef long long sbc_extended_t; -#define SCALE4_STAGE1(src)  ASR(src, SCALE4_STAGE1_BITS) -#define SCALE4_STAGE2(src)  ASR(src, SCALE4_STAGE2_BITS) -#define SCALE4_STAGED1(src) ASR(src, SCALE4_STAGED1_BITS) -#define SCALE4_STAGED2(src) ASR(src, SCALE4_STAGED2_BITS) -#define SCALE8_STAGE1(src)  ASR(src, SCALE8_STAGE1_BITS) -#define SCALE8_STAGE2(src)  ASR(src, SCALE8_STAGE2_BITS) -#define SCALE8_STAGED1(src) ASR(src, SCALE8_STAGED1_BITS) -#define SCALE8_STAGED2(src) ASR(src, SCALE8_STAGED2_BITS) +#define SCALE4_STAGE1(src)  ASR_64(src, SCALE4_STAGE1_BITS) +#define SCALE4_STAGE2(src)  ASR_64(src, SCALE4_STAGE2_BITS) +#define SCALE4_STAGED1(src) ASR_64(src, SCALE4_STAGED1_BITS) +#define SCALE4_STAGED2(src) ASR_64(src, SCALE4_STAGED2_BITS) +#define SCALE8_STAGE1(src)  ASR_64(src, SCALE8_STAGE1_BITS) +#define SCALE8_STAGE2(src)  ASR_64(src, SCALE8_STAGE2_BITS) +#define SCALE8_STAGED1(src) ASR_64(src, SCALE8_STAGED1_BITS) +#define SCALE8_STAGED2(src) ASR_64(src, SCALE8_STAGED2_BITS)  #define SBC_FIXED_0(val) { val = 0; }  #define ADD(dst, src)    { dst += src; }  #define SUB(dst, src)    { dst -= src; }  #define MUL(dst, a, b)   { dst = (sbc_fixed_t) a * b; } -#define MULA(dst, a, b)  { dst += (sbc_fixed_t) a * b; } +#define MULA(dst, a, b)  { dst += (sbc_extended_t) a * b; }  #define DIV2(dst, src)   { dst = ASR(src, 1); } diff --git a/sbc/sbc_tables.h b/sbc/sbc_tables.h index a170704d..2712cf23 100644 --- a/sbc/sbc_tables.h +++ b/sbc/sbc_tables.h @@ -2,7 +2,9 @@   *   *  Bluetooth low-complexity, subband codec (SBC) library   * - *  Copyright (C) 2004-2007  Marcel Holtmann <marcel@holtmann.org> + *  Copyright (C) 2004-2006  Marcel Holtmann <marcel@holtmann.org> + *  Copyright (C) 2004-2005  Henryk Ploetz <henryk@ploetzli.ch> + *  Copyright (C) 2005-2006  Brad Midgley <bmidgley@xmission.com>   *   *   *  This library is free software; you can redistribute it and/or | 
