/* monoscope.cpp * Copyright (C) 2002 Richard Boulton * Copyright (C) 1998-2001 Andy Lo A Foe * Original code by Tinic Uro * * This code is copied from Alsaplayer. The orginal code was by Tinic Uro and under * the BSD license without a advertisig clause. Andy Lo A Foe then relicensed the * code when he used it for Alsaplayer to GPL with Tinic's permission. Richard Boulton * then took this code and made a GPL plugin out of it. * * 7th December 2004 Christian Schaller: Richard Boulton and Andy Lo A Foe gave * permission to relicense their changes under BSD license so we where able to restore the * code to Tinic's original BSD license. * * This file is under what is known as the BSD license: * * Redistribution and use in source and binary forms, with or without modification, i * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * 3. The name of the author may not be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "monoscope.h" #include #include static void colors_init (guint32 * colors) { int i; for (i = 0; i < 32; i++) { colors[i] = (i * 8 << 16) + (255 << 8); colors[i + 31] = (255 << 16) + (((31 - i) * 8) << 8); } colors[63] = (40 << 16) + (75 << 8); } struct monoscope_state * monoscope_init (guint32 resx, guint32 resy) { struct monoscope_state *stateptr; /* I didn't program monoscope to only do 256*128, but it works that way */ g_return_val_if_fail (resx == 256, 0); g_return_val_if_fail (resy == 128, 0); stateptr = calloc (1, sizeof (struct monoscope_state)); if (stateptr == 0) return 0; stateptr->cstate = convolve_init (); colors_init (stateptr->colors); return stateptr; } guint32 * monoscope_update (struct monoscope_state * stateptr, gint16 data[512]) { /* Note that CONVOLVE_BIG must == data size here, ie 512. */ /* Really, we want samples evenly spread over the available data. * Just taking a continuous chunk will do for now, though. */ int i; int foo; int bar; int h; guint32 *loc; int factor; int val; int max = 1; short *thisEq; memcpy (stateptr->copyEq, data, sizeof (short) * CONVOLVE_BIG); thisEq = stateptr->copyEq; #if 1 val = convolve_match (stateptr->avgEq, stateptr->copyEq, stateptr->cstate); thisEq += val; #endif memset (stateptr->display, 0, 256 * 128 * sizeof (guint32)); for (i = 0; i < 256; i++) { foo = thisEq[i] + (stateptr->avgEq[i] >> 1); stateptr->avgEq[i] = foo; if (foo < 0) foo = -foo; if (foo > max) max = foo; } stateptr->avgMax += max - (stateptr->avgMax >> 8); if (stateptr->avgMax < max) stateptr->avgMax = max; /* Avoid overflow */ factor = 0x7fffffff / stateptr->avgMax; /* Keep the scaling sensible. */ if (factor > (1 << 18)) factor = 1 << 18; if (factor < (1 << 8)) factor = 1 << 8; for (i = 0; i < 256; i++) { foo = stateptr->avgEq[i] * factor; foo >>= 18; if (foo > 63) foo = 63; if (foo < -64) foo = -64; val = (i + ((foo + 64) << 8)); bar = val; if ((bar > 0) && (bar < (256 * 128))) { loc = stateptr->display + bar; if (foo < 0) { for (h = 0; h <= (-foo); h++) { *loc = stateptr->colors[h]; loc += 256; } } else { for (h = 0; h <= foo; h++) { *loc = stateptr->colors[h]; loc -= 256; } } } } /* Draw grid. */ for (i = 16; i < 128; i += 16) { for (h = 0; h < 256; h += 2) { stateptr->display[(i << 8) + h] = stateptr->colors[63]; if (i == 64) stateptr->display[(i << 8) + h + 1] = stateptr->colors[63]; } } for (i = 16; i < 256; i += 16) { for (h = 0; h < 128; h += 2) { stateptr->display[i + (h << 8)] = stateptr->colors[63]; } } return stateptr->display; } void monoscope_close (struct monoscope_state *stateptr) { }