summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorLennart Poettering <lennart@poettering.net>2008-06-27 22:26:00 +0200
committerLennart Poettering <lennart@poettering.net>2008-06-27 22:26:00 +0200
commit32fce4debb8b1eed26d7c5ba7ca807479cc47e99 (patch)
treea8f0fa756e74d86134cb3792d4f921a571ef29ee
parent2490f698c0826e2e845c0c03da58e1e3ae3d98f8 (diff)
update speex resampler
-rw-r--r--configure.ac2
-rw-r--r--src/Makefile.am4
-rw-r--r--src/pulsecore/speex/arch.h4
-rw-r--r--src/pulsecore/speex/fixed_generic.h4
-rw-r--r--src/pulsecore/speex/resample.c642
-rw-r--r--src/pulsecore/speex/speex_resampler.h12
-rw-r--r--src/pulsecore/speex/stack_alloc.h115
7 files changed, 460 insertions, 323 deletions
diff --git a/configure.ac b/configure.ac
index 029875cb..4fafd1ed 100644
--- a/configure.ac
+++ b/configure.ac
@@ -411,6 +411,8 @@ AC_CHECK_FUNCS([lstat])
AC_CHECK_FUNCS([setresuid setresgid setreuid setregid seteuid setegid ppoll strsignal sig2str strtof_l])
+AC_FUNC_ALLOCA
+
AC_MSG_CHECKING([for PTHREAD_PRIO_INHERIT])
AC_LANG_CONFTEST([AC_LANG_SOURCE([[
#include <pthread.h>
diff --git a/src/Makefile.am b/src/Makefile.am
index 9cce6ed4..0c81411f 100644
--- a/src/Makefile.am
+++ b/src/Makefile.am
@@ -648,10 +648,10 @@ libpulsedsp_la_LDFLAGS = -avoid-version
noinst_LTLIBRARIES = libspeex-resampler-fixed.la libspeex-resampler-float.la libffmpeg-resampler.la
-libspeex_resampler_fixed_la_CPPFLAGS = $(AM_CPPFLAGS) -DRANDOM_PREFIX=paspfx -DOUTSIDE_SPEEX -DFIXED_POINT
+libspeex_resampler_fixed_la_CPPFLAGS = $(AM_CPPFLAGS) -DRANDOM_PREFIX=paspfx -DOUTSIDE_SPEEX -DFIXED_POINT -DEXPORT= -DUSE_ALLOCA
libspeex_resampler_fixed_la_SOURCES = pulsecore/speex/resample.c pulsecore/speex/speex_resampler.h pulsecore/speex/arch.h pulsecore/speex/fixed_generic.h pulsecore/speexwrap.h
-libspeex_resampler_float_la_CPPFLAGS = $(AM_CPPFLAGS) -DRANDOM_PREFIX=paspfl -DOUTSIDE_SPEEX -DFLOATING_POINT
+libspeex_resampler_float_la_CPPFLAGS = $(AM_CPPFLAGS) -DRANDOM_PREFIX=paspfl -DOUTSIDE_SPEEX -DFLOATING_POINT -DEXPORT= -DUSE_ALLOCA
libspeex_resampler_float_la_SOURCES = pulsecore/speex/resample.c pulsecore/speex/speex_resampler.h pulsecore/speex/arch.h
libffmpeg_resampler_la_CPPFLAGS = $(AM_CPPFLAGS)
diff --git a/src/pulsecore/speex/arch.h b/src/pulsecore/speex/arch.h
index 9987c8fb..0817749c 100644
--- a/src/pulsecore/speex/arch.h
+++ b/src/pulsecore/speex/arch.h
@@ -125,8 +125,6 @@ typedef spx_word32_t spx_sig_t;
#include "fixed_arm5e.h"
#elif defined (ARM4_ASM)
#include "fixed_arm4.h"
-#elif defined (ARM5E_ASM)
-#include "fixed_arm5e.h"
#elif defined (BFIN_ASM)
#include "fixed_bfin.h"
#endif
@@ -234,7 +232,7 @@ typedef float spx_word32_t;
#ifdef FIXED_DEBUG
-long long spx_mips=0;
+extern long long spx_mips;
#endif
diff --git a/src/pulsecore/speex/fixed_generic.h b/src/pulsecore/speex/fixed_generic.h
index 547e22c7..0b219188 100644
--- a/src/pulsecore/speex/fixed_generic.h
+++ b/src/pulsecore/speex/fixed_generic.h
@@ -47,14 +47,14 @@
#define SHR32(a,shift) ((a) >> (shift))
#define SHL32(a,shift) ((a) << (shift))
#define PSHR16(a,shift) (SHR16((a)+((1<<((shift))>>1)),shift))
-#define PSHR32(a,shift) (SHR32((a)+((1<<((shift))>>1)),shift))
+#define PSHR32(a,shift) (SHR32((a)+((EXTEND32(1)<<((shift))>>1)),shift))
#define VSHR32(a, shift) (((shift)>0) ? SHR32(a, shift) : SHL32(a, -(shift)))
#define SATURATE16(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
#define SATURATE32(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
#define SHR(a,shift) ((a) >> (shift))
#define SHL(a,shift) ((spx_word32_t)(a) << (shift))
-#define PSHR(a,shift) (SHR((a)+((1<<((shift))>>1)),shift))
+#define PSHR(a,shift) (SHR((a)+((EXTEND32(1)<<((shift))>>1)),shift))
#define SATURATE(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
diff --git a/src/pulsecore/speex/resample.c b/src/pulsecore/speex/resample.c
index 1e592002..5f5b9c6b 100644
--- a/src/pulsecore/speex/resample.c
+++ b/src/pulsecore/speex/resample.c
@@ -1,4 +1,5 @@
-/* Copyright (C) 2007 Jean-Marc Valin
+/* Copyright (C) 2007-2008 Jean-Marc Valin
+ Copyright (C) 2008 Thorvald Natvig
File: resample.c
Arbitrary resampling code
@@ -74,6 +75,7 @@ static void speex_free (void *ptr) {free(ptr);}
#include "os_support.h"
#endif /* OUTSIDE_SPEEX */
+#include "stack_alloc.h"
#include <math.h>
#ifndef M_PI
@@ -86,10 +88,6 @@ static void speex_free (void *ptr) {free(ptr);}
#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x))))
#endif
-/*#define float double*/
-#define FILTER_SIZE 64
-#define OVERSAMPLE 8
-
#define IMAX(a,b) ((a) > (b) ? (a) : (b))
#define IMIN(a,b) ((a) < (b) ? (a) : (b))
@@ -97,6 +95,17 @@ static void speex_free (void *ptr) {free(ptr);}
#define NULL 0
#endif
+#ifdef _USE_SSE
+#include "resample_sse.h"
+#endif
+
+/* Numer of elements to allocate on the stack */
+#ifdef VAR_ARRAYS
+#define FIXED_STACK_ALLOC 8192
+#else
+#define FIXED_STACK_ALLOC 1024
+#endif
+
typedef int (*resampler_basic_func)(SpeexResamplerState *, spx_uint32_t , const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *);
struct SpeexResamplerState_ {
@@ -109,6 +118,7 @@ struct SpeexResamplerState_ {
spx_uint32_t nb_channels;
spx_uint32_t filt_len;
spx_uint32_t mem_alloc_size;
+ spx_uint32_t buffer_size;
int int_advance;
int frac_advance;
float cutoff;
@@ -317,44 +327,47 @@ static void cubic_coef(spx_word16_t frac, spx_word16_t interp[4])
static int resampler_basic_direct_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
{
- int N = st->filt_len;
+ const int N = st->filt_len;
int out_sample = 0;
- spx_word16_t *mem;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
- mem = st->mem + channel_index * st->mem_alloc_size;
+ const spx_word16_t *sinc_table = st->sinc_table;
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ spx_word32_t sum;
+ int j;
+
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
{
- int j;
- spx_word32_t sum=0;
+ const spx_word16_t *sinc = & sinc_table[samp_frac_num*N];
+ const spx_word16_t *iptr = & in[last_sample];
- /* We already have all the filter coefficients pre-computed in the table */
- const spx_word16_t *ptr;
- /* Do the memory part */
- for (j=0;last_sample-N+1+j < 0;j++)
- {
- sum += MULT16_16(mem[last_sample+j],st->sinc_table[samp_frac_num*st->filt_len+j]);
- }
+#ifndef OVERRIDE_INNER_PRODUCT_SINGLE
+ float accum[4] = {0,0,0,0};
- /* Do the new part */
- ptr = in+st->in_stride*(last_sample-N+1+j);
- for (;j<N;j++)
- {
- sum += MULT16_16(*ptr,st->sinc_table[samp_frac_num*st->filt_len+j]);
- ptr += st->in_stride;
+ for(j=0;j<N;j+=4) {
+ accum[0] += sinc[j]*iptr[j];
+ accum[1] += sinc[j+1]*iptr[j+1];
+ accum[2] += sinc[j+2]*iptr[j+2];
+ accum[3] += sinc[j+3]*iptr[j+3];
}
+ sum = accum[0] + accum[1] + accum[2] + accum[3];
+#else
+ sum = inner_product_single(sinc, iptr, N);
+#endif
- *out = PSHR32(sum,15);
- out += st->out_stride;
- out_sample++;
- last_sample += st->int_advance;
- samp_frac_num += st->frac_advance;
- if (samp_frac_num >= st->den_rate)
+ out[out_stride * out_sample++] = PSHR32(sum, 15);
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate)
{
- samp_frac_num -= st->den_rate;
+ samp_frac_num -= den_rate;
last_sample++;
}
}
+
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
@@ -365,44 +378,47 @@ static int resampler_basic_direct_single(SpeexResamplerState *st, spx_uint32_t c
/* This is the same as the previous function, except with a double-precision accumulator */
static int resampler_basic_direct_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
{
- int N = st->filt_len;
+ const int N = st->filt_len;
int out_sample = 0;
- spx_word16_t *mem;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
- mem = st->mem + channel_index * st->mem_alloc_size;
+ const spx_word16_t *sinc_table = st->sinc_table;
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ double sum;
+ int j;
+
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
{
- int j;
- double sum=0;
+ const spx_word16_t *sinc = & sinc_table[samp_frac_num*N];
+ const spx_word16_t *iptr = & in[last_sample];
- /* We already have all the filter coefficients pre-computed in the table */
- const spx_word16_t *ptr;
- /* Do the memory part */
- for (j=0;last_sample-N+1+j < 0;j++)
- {
- sum += MULT16_16(mem[last_sample+j],(double)st->sinc_table[samp_frac_num*st->filt_len+j]);
- }
+#ifndef OVERRIDE_INNER_PRODUCT_DOUBLE
+ double accum[4] = {0,0,0,0};
- /* Do the new part */
- ptr = in+st->in_stride*(last_sample-N+1+j);
- for (;j<N;j++)
- {
- sum += MULT16_16(*ptr,(double)st->sinc_table[samp_frac_num*st->filt_len+j]);
- ptr += st->in_stride;
+ for(j=0;j<N;j+=4) {
+ accum[0] += sinc[j]*iptr[j];
+ accum[1] += sinc[j+1]*iptr[j+1];
+ accum[2] += sinc[j+2]*iptr[j+2];
+ accum[3] += sinc[j+3]*iptr[j+3];
}
+ sum = accum[0] + accum[1] + accum[2] + accum[3];
+#else
+ sum = inner_product_double(sinc, iptr, N);
+#endif
- *out = sum;
- out += st->out_stride;
- out_sample++;
- last_sample += st->int_advance;
- samp_frac_num += st->frac_advance;
- if (samp_frac_num >= st->den_rate)
+ out[out_stride * out_sample++] = PSHR32(sum, 15);
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate)
{
- samp_frac_num -= st->den_rate;
+ samp_frac_num -= den_rate;
last_sample++;
}
}
+
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
@@ -411,65 +427,58 @@ static int resampler_basic_direct_double(SpeexResamplerState *st, spx_uint32_t c
static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
{
- int N = st->filt_len;
+ const int N = st->filt_len;
int out_sample = 0;
- spx_word16_t *mem;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
- mem = st->mem + channel_index * st->mem_alloc_size;
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ int j;
+ spx_word32_t sum;
+
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
{
- int j;
- spx_word32_t sum=0;
+ const spx_word16_t *iptr = & in[last_sample];
- /* We need to interpolate the sinc filter */
- spx_word32_t accum[4] = {0.f,0.f, 0.f, 0.f};
- spx_word16_t interp[4];
- const spx_word16_t *ptr;
- int offset;
- spx_word16_t frac;
- offset = samp_frac_num*st->oversample/st->den_rate;
+ const int offset = samp_frac_num*st->oversample/st->den_rate;
#ifdef FIXED_POINT
- frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate);
+ const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate);
#else
- frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate;
+ const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate;
#endif
- /* This code is written like this to make it easy to optimise with SIMD.
- For most DSPs, it would be best to split the loops in two because most DSPs
- have only two accumulators */
- for (j=0;last_sample-N+1+j < 0;j++)
- {
- spx_word16_t curr_mem = mem[last_sample+j];
- accum[0] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
- accum[1] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
- accum[2] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset]);
- accum[3] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
- }
- ptr = in+st->in_stride*(last_sample-N+1+j);
- /* Do the new part */
- for (;j<N;j++)
- {
- spx_word16_t curr_in = *ptr;
- ptr += st->in_stride;
- accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
- accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
- accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
- accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
+ spx_word16_t interp[4];
+
+
+#ifndef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
+ spx_word32_t accum[4] = {0,0,0,0};
+
+ for(j=0;j<N;j++) {
+ const spx_word16_t curr_in=iptr[j];
+ accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
+ accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
+ accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
+ accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
}
+
cubic_coef(frac, interp);
sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]);
+#else
+ cubic_coef(frac, interp);
+ sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
+#endif
- *out = PSHR32(sum,15);
- out += st->out_stride;
- out_sample++;
- last_sample += st->int_advance;
- samp_frac_num += st->frac_advance;
- if (samp_frac_num >= st->den_rate)
+ out[out_stride * out_sample++] = PSHR32(sum,15);
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate)
{
- samp_frac_num -= st->den_rate;
+ samp_frac_num -= den_rate;
last_sample++;
}
}
+
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
@@ -480,60 +489,58 @@ static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint3
/* This is the same as the previous function, except with a double-precision accumulator */
static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
{
- int N = st->filt_len;
+ const int N = st->filt_len;
int out_sample = 0;
- spx_word16_t *mem;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
- mem = st->mem + channel_index * st->mem_alloc_size;
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ int j;
+ spx_word32_t sum;
+
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
{
- int j;
- spx_word32_t sum=0;
-
- /* We need to interpolate the sinc filter */
- double accum[4] = {0.f,0.f, 0.f, 0.f};
- float interp[4];
- const spx_word16_t *ptr;
- float alpha = ((float)samp_frac_num)/st->den_rate;
- int offset = samp_frac_num*st->oversample/st->den_rate;
- float frac = alpha*st->oversample - offset;
- /* This code is written like this to make it easy to optimise with SIMD.
- For most DSPs, it would be best to split the loops in two because most DSPs
- have only two accumulators */
- for (j=0;last_sample-N+1+j < 0;j++)
- {
- double curr_mem = mem[last_sample+j];
- accum[0] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
- accum[1] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
- accum[2] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset]);
- accum[3] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
- }
- ptr = in+st->in_stride*(last_sample-N+1+j);
- /* Do the new part */
- for (;j<N;j++)
- {
- double curr_in = *ptr;
- ptr += st->in_stride;
- accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
- accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
- accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
- accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
+ const spx_word16_t *iptr = & in[last_sample];
+
+ const int offset = samp_frac_num*st->oversample/st->den_rate;
+#ifdef FIXED_POINT
+ const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate);
+#else
+ const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate;
+#endif
+ spx_word16_t interp[4];
+
+
+#ifndef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
+ double accum[4] = {0,0,0,0};
+
+ for(j=0;j<N;j++) {
+ const double curr_in=iptr[j];
+ accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
+ accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
+ accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
+ accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
}
+
cubic_coef(frac, interp);
- sum = interp[0]*accum[0] + interp[1]*accum[1] + interp[2]*accum[2] + interp[3]*accum[3];
-
- *out = PSHR32(sum,15);
- out += st->out_stride;
- out_sample++;
- last_sample += st->int_advance;
- samp_frac_num += st->frac_advance;
- if (samp_frac_num >= st->den_rate)
+ sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]);
+#else
+ cubic_coef(frac, interp);
+ sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
+#endif
+
+ out[out_stride * out_sample++] = PSHR32(sum,15);
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate)
{
- samp_frac_num -= st->den_rate;
+ samp_frac_num -= den_rate;
last_sample++;
}
}
+
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
@@ -630,18 +637,18 @@ static void update_filter(SpeexResamplerState *st)
if (!st->mem)
{
spx_uint32_t i;
- st->mem = (spx_word16_t*)speex_alloc(st->nb_channels*(st->filt_len-1) * sizeof(spx_word16_t));
- for (i=0;i<st->nb_channels*(st->filt_len-1);i++)
+ st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
+ st->mem = (spx_word16_t*)speex_alloc(st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
+ for (i=0;i<st->nb_channels*st->mem_alloc_size;i++)
st->mem[i] = 0;
- st->mem_alloc_size = st->filt_len-1;
/*speex_warning("init filter");*/
} else if (!st->started)
{
spx_uint32_t i;
- st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*(st->filt_len-1) * sizeof(spx_word16_t));
- for (i=0;i<st->nb_channels*(st->filt_len-1);i++)
+ st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
+ st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
+ for (i=0;i<st->nb_channels*st->mem_alloc_size;i++)
st->mem[i] = 0;
- st->mem_alloc_size = st->filt_len-1;
/*speex_warning("reinit filter");*/
} else if (st->filt_len > old_length)
{
@@ -649,10 +656,10 @@ static void update_filter(SpeexResamplerState *st)
/* Increase the filter length */
/*speex_warning("increase filter size");*/
int old_alloc_size = st->mem_alloc_size;
- if (st->filt_len-1 > st->mem_alloc_size)
+ if ((st->filt_len-1 + st->buffer_size) > st->mem_alloc_size)
{
- st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*(st->filt_len-1) * sizeof(spx_word16_t));
- st->mem_alloc_size = st->filt_len-1;
+ st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
+ st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
}
for (i=st->nb_channels-1;i>=0;i--)
{
@@ -708,12 +715,12 @@ static void update_filter(SpeexResamplerState *st)
}
-SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
+EXPORT SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
{
return speex_resampler_init_frac(nb_channels, in_rate, out_rate, in_rate, out_rate, quality, err);
}
-SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
+EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
{
spx_uint32_t i;
SpeexResamplerState *st;
@@ -742,6 +749,12 @@ SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uin
st->in_stride = 1;
st->out_stride = 1;
+#ifdef FIXED_POINT
+ st->buffer_size = 160;
+#else
+ st->buffer_size = 160;
+#endif
+
/* Per channel data */
st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(int));
st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(int));
@@ -766,7 +779,7 @@ SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uin
return st;
}
-void speex_resampler_destroy(SpeexResamplerState *st)
+EXPORT void speex_resampler_destroy(SpeexResamplerState *st)
{
speex_free(st->mem);
speex_free(st->sinc_table);
@@ -776,186 +789,168 @@ void speex_resampler_destroy(SpeexResamplerState *st)
speex_free(st);
}
-
-
-static int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
+static int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t channel_index, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
{
int j=0;
- int N = st->filt_len;
+ const int N = st->filt_len;
int out_sample = 0;
- spx_word16_t *mem;
- spx_uint32_t tmp_out_len = 0;
- mem = st->mem + channel_index * st->mem_alloc_size;
- st->started = 1;
+ spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
+ spx_uint32_t ilen;
- /* Handle the case where we have samples left from a reduction in filter length */
- if (st->magic_samples[channel_index])
- {
- int istride_save;
- spx_uint32_t tmp_in_len;
- spx_uint32_t tmp_magic;
-
- istride_save = st->in_stride;
- tmp_in_len = st->magic_samples[channel_index];
- tmp_out_len = *out_len;
- /* magic_samples needs to be set to zero to avoid infinite recursion */
- tmp_magic = st->magic_samples[channel_index];
- st->magic_samples[channel_index] = 0;
- st->in_stride = 1;
- speex_resampler_process_native(st, channel_index, mem+N-1, &tmp_in_len, out, &tmp_out_len);
- st->in_stride = istride_save;
- /*speex_warning_int("extra samples:", tmp_out_len);*/
- /* If we couldn't process all "magic" input samples, save the rest for next time */
- if (tmp_in_len < tmp_magic)
- {
- spx_uint32_t i;
- st->magic_samples[channel_index] = tmp_magic-tmp_in_len;
- for (i=0;i<st->magic_samples[channel_index];i++)
- mem[N-1+i]=mem[N-1+i+tmp_in_len];
- }
- out += tmp_out_len*st->out_stride;
- *out_len -= tmp_out_len;
- }
+ st->started = 1;
/* Call the right resampler through the function ptr */
- out_sample = st->resampler_ptr(st, channel_index, in, in_len, out, out_len);
+ out_sample = st->resampler_ptr(st, channel_index, mem, in_len, out, out_len);
if (st->last_sample[channel_index] < (spx_int32_t)*in_len)
*in_len = st->last_sample[channel_index];
- *out_len = out_sample+tmp_out_len;
+ *out_len = out_sample;
st->last_sample[channel_index] -= *in_len;
- for (j=0;j<N-1-(spx_int32_t)*in_len;j++)
- mem[j] = mem[j+*in_len];
- for (;j<N-1;j++)
- mem[j] = in[st->in_stride*(j+*in_len-N+1)];
+ ilen = *in_len;
+
+ for(j=0;j<N-1;++j)
+ mem[j] = mem[j+ilen];
return RESAMPLER_ERR_SUCCESS;
}
-#define FIXED_STACK_ALLOC 1024
+static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_index, spx_word16_t **out, spx_uint32_t out_len) {
+ spx_uint32_t tmp_in_len = st->magic_samples[channel_index];
+ spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
+ const int N = st->filt_len;
+
+ speex_resampler_process_native(st, channel_index, &tmp_in_len, *out, &out_len);
+
+ st->magic_samples[channel_index] -= tmp_in_len;
+
+ /* If we couldn't process all "magic" input samples, save the rest for next time */
+ if (st->magic_samples[channel_index])
+ {
+ spx_uint32_t i;
+ for (i=0;i<st->magic_samples[channel_index];i++)
+ mem[N-1+i]=mem[N-1+i+tmp_in_len];
+ }
+ *out += out_len*st->out_stride;
+ return out_len;
+}
#ifdef FIXED_POINT
-int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
-{
- spx_uint32_t i;
- int istride_save, ostride_save;
-#ifdef VAR_ARRAYS
- spx_word16_t x[*in_len];
- spx_word16_t y[*out_len];
- /*VARDECL(spx_word16_t *x);
- VARDECL(spx_word16_t *y);
- ALLOC(x, *in_len, spx_word16_t);
- ALLOC(y, *out_len, spx_word16_t);*/
- istride_save = st->in_stride;
- ostride_save = st->out_stride;
- for (i=0;i<*in_len;i++)
- x[i] = WORD2INT(in[i*st->in_stride]);
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native(st, channel_index, x, in_len, y, out_len);
- st->in_stride = istride_save;
- st->out_stride = ostride_save;
- for (i=0;i<*out_len;i++)
- out[i*st->out_stride] = y[i];
+EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
#else
- spx_word16_t x[FIXED_STACK_ALLOC];
- spx_word16_t y[FIXED_STACK_ALLOC];
- spx_uint32_t ilen=*in_len, olen=*out_len;
- istride_save = st->in_stride;
- ostride_save = st->out_stride;
- while (ilen && olen)
- {
- spx_uint32_t ichunk, ochunk;
- ichunk = ilen;
- ochunk = olen;
- if (ichunk>FIXED_STACK_ALLOC)
- ichunk=FIXED_STACK_ALLOC;
- if (ochunk>FIXED_STACK_ALLOC)
- ochunk=FIXED_STACK_ALLOC;
- for (i=0;i<ichunk;i++)
- x[i] = WORD2INT(in[i*st->in_stride]);
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native(st, channel_index, x, &ichunk, y, &ochunk);
- st->in_stride = istride_save;
- st->out_stride = ostride_save;
- for (i=0;i<ochunk;i++)
- out[i*st->out_stride] = y[i];
- out += ochunk;
- in += ichunk;
- ilen -= ichunk;
- olen -= ochunk;
+EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
+#endif
+{
+ int j;
+ spx_uint32_t ilen = *in_len;
+ spx_uint32_t olen = *out_len;
+ spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
+ const int filt_offs = st->filt_len - 1;
+ const spx_uint32_t xlen = st->mem_alloc_size - filt_offs;
+ const int istride = st->in_stride;
+
+ if (st->magic_samples[channel_index])
+ olen -= speex_resampler_magic(st, channel_index, &out, olen);
+ if (! st->magic_samples[channel_index]) {
+ while (ilen && olen) {
+ spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
+ spx_uint32_t ochunk = olen;
+
+ if (in) {
+ for(j=0;j<ichunk;++j)
+ x[j+filt_offs]=in[j*istride];
+ } else {
+ for(j=0;j<ichunk;++j)
+ x[j+filt_offs]=0;
+ }
+ speex_resampler_process_native(st, channel_index, &ichunk, out, &ochunk);
+ ilen -= ichunk;
+ olen -= ochunk;
+ out += ochunk * st->out_stride;
+ if (in)
+ in += ichunk * istride;
+ }
}
*in_len -= ilen;
*out_len -= olen;
-#endif
return RESAMPLER_ERR_SUCCESS;
}
-int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
-{
- return speex_resampler_process_native(st, channel_index, in, in_len, out, out_len);
-}
+
+#ifdef FIXED_POINT
+EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
#else
-int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
-{
- return speex_resampler_process_native(st, channel_index, in, in_len, out, out_len);
-}
-int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
+EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
+#endif
{
- spx_uint32_t i;
- int istride_save, ostride_save;
+ int j;
+ const int istride_save = st->in_stride;
+ const int ostride_save = st->out_stride;
+ spx_uint32_t ilen = *in_len;
+ spx_uint32_t olen = *out_len;
+ spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
+ const spx_uint32_t xlen = st->mem_alloc_size - (st->filt_len - 1);
#ifdef VAR_ARRAYS
- spx_word16_t x[*in_len];
- spx_word16_t y[*out_len];
- /*VARDECL(spx_word16_t *x);
- VARDECL(spx_word16_t *y);
- ALLOC(x, *in_len, spx_word16_t);
- ALLOC(y, *out_len, spx_word16_t);*/
- istride_save = st->in_stride;
- ostride_save = st->out_stride;
- for (i=0;i<*in_len;i++)
- x[i] = in[i*st->in_stride];
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native(st, channel_index, x, in_len, y, out_len);
- st->in_stride = istride_save;
- st->out_stride = ostride_save;
- for (i=0;i<*out_len;i++)
- out[i*st->out_stride] = WORD2INT(y[i]);
+ const unsigned int ylen = (olen < FIXED_STACK_ALLOC) ? olen : FIXED_STACK_ALLOC;
+ VARDECL(spx_word16_t *ystack);
+ ALLOC(ystack, ylen, spx_word16_t);
#else
- spx_word16_t x[FIXED_STACK_ALLOC];
- spx_word16_t y[FIXED_STACK_ALLOC];
- spx_uint32_t ilen=*in_len, olen=*out_len;
- istride_save = st->in_stride;
- ostride_save = st->out_stride;
- while (ilen && olen)
- {
- spx_uint32_t ichunk, ochunk;
- ichunk = ilen;
- ochunk = olen;
- if (ichunk>FIXED_STACK_ALLOC)
- ichunk=FIXED_STACK_ALLOC;
- if (ochunk>FIXED_STACK_ALLOC)
- ochunk=FIXED_STACK_ALLOC;
- for (i=0;i<ichunk;i++)
- x[i] = in[i*st->in_stride];
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native(st, channel_index, x, &ichunk, y, &ochunk);
- st->in_stride = istride_save;
- st->out_stride = ostride_save;
- for (i=0;i<ochunk;i++)
- out[i*st->out_stride] = WORD2INT(y[i]);
- out += ochunk;
- in += ichunk;
- ilen -= ichunk;
- olen -= ochunk;
+ const unsigned int ylen = FIXED_STACK_ALLOC;
+ spx_word16_t ystack[FIXED_STACK_ALLOC];
+#endif
+
+ st->out_stride = 1;
+
+ while (ilen && olen) {
+ spx_word16_t *y = ystack;
+ spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
+ spx_uint32_t ochunk = (olen > ylen) ? ylen : olen;
+ spx_uint32_t omagic = 0;
+
+ if (st->magic_samples[channel_index]) {
+ omagic = speex_resampler_magic(st, channel_index, &y, ochunk);
+ ochunk -= omagic;
+ olen -= omagic;
+ }
+ if (! st->magic_samples[channel_index]) {
+ if (in) {
+ for(j=0;j<ichunk;++j)
+#ifdef FIXED_POINT
+ x[j+st->filt_len-1]=WORD2INT(in[j*istride_save]);
+#else
+ x[j+st->filt_len-1]=in[j*istride_save];
+#endif
+ } else {
+ for(j=0;j<ichunk;++j)
+ x[j+st->filt_len-1]=0;
+ }
+
+ speex_resampler_process_native(st, channel_index, &ichunk, y, &ochunk);
+ } else {
+ ichunk = 0;
+ ochunk = 0;
+ }
+
+ for (j=0;j<ochunk+omagic;++j)
+#ifdef FIXED_POINT
+ out[j*ostride_save] = ystack[j];
+#else
+ out[j*ostride_save] = WORD2INT(ystack[j]);
+#endif
+
+ ilen -= ichunk;
+ olen -= ochunk;
+ out += (ochunk+omagic) * ostride_save;
+ if (in)
+ in += ichunk * istride_save;
}
+ st->out_stride = ostride_save;
*in_len -= ilen;
*out_len -= olen;
-#endif
+
return RESAMPLER_ERR_SUCCESS;
}
-#endif
-int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
+EXPORT int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
{
spx_uint32_t i;
int istride_save, ostride_save;
@@ -966,15 +961,17 @@ int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const flo
for (i=0;i<st->nb_channels;i++)
{
*out_len = bak_len;
- speex_resampler_process_float(st, i, in+i, in_len, out+i, out_len);
+ if (in != NULL)
+ speex_resampler_process_float(st, i, in+i, in_len, out+i, out_len);
+ else
+ speex_resampler_process_float(st, i, NULL, in_len, out+i, out_len);
}
st->in_stride = istride_save;
st->out_stride = ostride_save;
return RESAMPLER_ERR_SUCCESS;
}
-
-int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
+EXPORT int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
{
spx_uint32_t i;
int istride_save, ostride_save;
@@ -985,25 +982,28 @@ int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_i
for (i=0;i<st->nb_channels;i++)
{
*out_len = bak_len;
- speex_resampler_process_int(st, i, in+i, in_len, out+i, out_len);
+ if (in != NULL)
+ speex_resampler_process_int(st, i, in+i, in_len, out+i, out_len);
+ else
+ speex_resampler_process_int(st, i, NULL, in_len, out+i, out_len);
}
st->in_stride = istride_save;
st->out_stride = ostride_save;
return RESAMPLER_ERR_SUCCESS;
}
-int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate, spx_uint32_t out_rate)
+EXPORT int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate, spx_uint32_t out_rate)
{
return speex_resampler_set_rate_frac(st, in_rate, out_rate, in_rate, out_rate);
}
-void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_rate, spx_uint32_t *out_rate)
+EXPORT void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_rate, spx_uint32_t *out_rate)
{
*in_rate = st->in_rate;
*out_rate = st->out_rate;
}
-int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
+EXPORT int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
{
spx_uint32_t fact;
spx_uint32_t old_den;
@@ -1042,13 +1042,13 @@ int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_nu
return RESAMPLER_ERR_SUCCESS;
}
-void speex_resampler_get_ratio(SpeexResamplerState *st, spx_uint32_t *ratio_num, spx_uint32_t *ratio_den)
+EXPORT void speex_resampler_get_ratio(SpeexResamplerState *st, spx_uint32_t *ratio_num, spx_uint32_t *ratio_den)
{
*ratio_num = st->num_rate;
*ratio_den = st->den_rate;
}
-int speex_resampler_set_quality(SpeexResamplerState *st, int quality)
+EXPORT int speex_resampler_set_quality(SpeexResamplerState *st, int quality)
{
if (quality > 10 || quality < 0)
return RESAMPLER_ERR_INVALID_ARG;
@@ -1060,32 +1060,42 @@ int speex_resampler_set_quality(SpeexResamplerState *st, int quality)
return RESAMPLER_ERR_SUCCESS;
}
-void speex_resampler_get_quality(SpeexResamplerState *st, int *quality)
+EXPORT void speex_resampler_get_quality(SpeexResamplerState *st, int *quality)
{
*quality = st->quality;
}
-void speex_resampler_set_input_stride(SpeexResamplerState *st, spx_uint32_t stride)
+EXPORT void speex_resampler_set_input_stride(SpeexResamplerState *st, spx_uint32_t stride)
{
st->in_stride = stride;
}
-void speex_resampler_get_input_stride(SpeexResamplerState *st, spx_uint32_t *stride)
+EXPORT void speex_resampler_get_input_stride(SpeexResamplerState *st, spx_uint32_t *stride)
{
*stride = st->in_stride;
}
-void speex_resampler_set_output_stride(SpeexResamplerState *st, spx_uint32_t stride)
+EXPORT void speex_resampler_set_output_stride(SpeexResamplerState *st, spx_uint32_t stride)
{
st->out_stride = stride;
}
-void speex_resampler_get_output_stride(SpeexResamplerState *st, spx_uint32_t *stride)
+EXPORT void speex_resampler_get_output_stride(SpeexResamplerState *st, spx_uint32_t *stride)
{
*stride = st->out_stride;
}
-int speex_resampler_skip_zeros(SpeexResamplerState *st)
+EXPORT int speex_resampler_get_input_latency(SpeexResamplerState *st)
+{
+ return st->filt_len / 2;
+}
+
+EXPORT int speex_resampler_get_output_latency(SpeexResamplerState *st)
+{
+ return ((st->filt_len / 2) * st->den_rate + (st->num_rate >> 1)) / st->num_rate;
+}
+
+EXPORT int speex_resampler_skip_zeros(SpeexResamplerState *st)
{
spx_uint32_t i;
for (i=0;i<st->nb_channels;i++)
@@ -1093,7 +1103,7 @@ int speex_resampler_skip_zeros(SpeexResamplerState *st)
return RESAMPLER_ERR_SUCCESS;
}
-int speex_resampler_reset_mem(SpeexResamplerState *st)
+EXPORT int speex_resampler_reset_mem(SpeexResamplerState *st)
{
spx_uint32_t i;
for (i=0;i<st->nb_channels*(st->filt_len-1);i++)
@@ -1101,7 +1111,7 @@ int speex_resampler_reset_mem(SpeexResamplerState *st)
return RESAMPLER_ERR_SUCCESS;
}
-const char *speex_resampler_strerror(int err)
+EXPORT const char *speex_resampler_strerror(int err)
{
switch (err)
{
diff --git a/src/pulsecore/speex/speex_resampler.h b/src/pulsecore/speex/speex_resampler.h
index 8629eeb3..c2853f64 100644
--- a/src/pulsecore/speex/speex_resampler.h
+++ b/src/pulsecore/speex/speex_resampler.h
@@ -71,6 +71,8 @@
#define speex_resampler_get_input_stride CAT_PREFIX(RANDOM_PREFIX,_resampler_get_input_stride)
#define speex_resampler_set_output_stride CAT_PREFIX(RANDOM_PREFIX,_resampler_set_output_stride)
#define speex_resampler_get_output_stride CAT_PREFIX(RANDOM_PREFIX,_resampler_get_output_stride)
+#define speex_resampler_get_input_latency CAT_PREFIX(RANDOM_PREFIX,_resampler_get_input_latency)
+#define speex_resampler_get_output_latency CAT_PREFIX(RANDOM_PREFIX,_resampler_get_output_latency)
#define speex_resampler_skip_zeros CAT_PREFIX(RANDOM_PREFIX,_resampler_skip_zeros)
#define speex_resampler_reset_mem CAT_PREFIX(RANDOM_PREFIX,_resampler_reset_mem)
#define speex_resampler_strerror CAT_PREFIX(RANDOM_PREFIX,_resampler_strerror)
@@ -300,6 +302,16 @@ void speex_resampler_set_output_stride(SpeexResamplerState *st,
void speex_resampler_get_output_stride(SpeexResamplerState *st,
spx_uint32_t *stride);
+/** Get the latency in input samples introduced by the resampler.
+ * @param st Resampler state
+ */
+int speex_resampler_get_input_latency(SpeexResamplerState *st);
+
+/** Get the latency in output samples introduced by the resampler.
+ * @param st Resampler state
+ */
+int speex_resampler_get_output_latency(SpeexResamplerState *st);
+
/** Make sure that the first samples to go out of the resamplers don't have
* leading zeros. This is only useful before starting to use a newly created
* resampler. It is recommended to use that when resampling an audio file, as
diff --git a/src/pulsecore/speex/stack_alloc.h b/src/pulsecore/speex/stack_alloc.h
new file mode 100644
index 00000000..6c56334f
--- /dev/null
+++ b/src/pulsecore/speex/stack_alloc.h
@@ -0,0 +1,115 @@
+/* Copyright (C) 2002 Jean-Marc Valin */
+/**
+ @file stack_alloc.h
+ @brief Temporary memory allocation on stack
+*/
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef STACK_ALLOC_H
+#define STACK_ALLOC_H
+
+#ifdef USE_ALLOCA
+# ifdef WIN32
+# include <malloc.h>
+# else
+# ifdef HAVE_ALLOCA_H
+# include <alloca.h>
+# else
+# include <stdlib.h>
+# endif
+# endif
+#endif
+
+/**
+ * @def ALIGN(stack, size)
+ *
+ * Aligns the stack to a 'size' boundary
+ *
+ * @param stack Stack
+ * @param size New size boundary
+ */
+
+/**
+ * @def PUSH(stack, size, type)
+ *
+ * Allocates 'size' elements of type 'type' on the stack
+ *
+ * @param stack Stack
+ * @param size Number of elements
+ * @param type Type of element
+ */
+
+/**
+ * @def VARDECL(var)
+ *
+ * Declare variable on stack
+ *
+ * @param var Variable to declare
+ */
+
+/**
+ * @def ALLOC(var, size, type)
+ *
+ * Allocate 'size' elements of 'type' on stack
+ *
+ * @param var Name of variable to allocate
+ * @param size Number of elements
+ * @param type Type of element
+ */
+
+#ifdef ENABLE_VALGRIND
+
+#include <valgrind/memcheck.h>
+
+#define ALIGN(stack, size) ((stack) += ((size) - (long)(stack)) & ((size) - 1))
+
+#define PUSH(stack, size, type) (VALGRIND_MAKE_NOACCESS(stack, 1000),ALIGN((stack),sizeof(type)),VALGRIND_MAKE_WRITABLE(stack, ((size)*sizeof(type))),(stack)+=((size)*sizeof(type)),(type*)((stack)-((size)*sizeof(type))))
+
+#else
+
+#define ALIGN(stack, size) ((stack) += ((size) - (long)(stack)) & ((size) - 1))
+
+#define PUSH(stack, size, type) (ALIGN((stack),sizeof(type)),(stack)+=((size)*sizeof(type)),(type*)((stack)-((size)*sizeof(type))))
+
+#endif
+
+#if defined(VAR_ARRAYS)
+#define VARDECL(var)
+#define ALLOC(var, size, type) type var[size]
+#elif defined(USE_ALLOCA)
+#define VARDECL(var) var
+#define ALLOC(var, size, type) var = alloca(sizeof(type)*(size))
+#else
+#define VARDECL(var) var
+#define ALLOC(var, size, type) var = PUSH(stack, size, type)
+#endif
+
+
+#endif