diff options
Diffstat (limited to 'src/modules/bluetooth/sbc_primitives.c')
-rw-r--r-- | src/modules/bluetooth/sbc_primitives.c | 469 |
1 files changed, 469 insertions, 0 deletions
diff --git a/src/modules/bluetooth/sbc_primitives.c b/src/modules/bluetooth/sbc_primitives.c new file mode 100644 index 00000000..303f3fee --- /dev/null +++ b/src/modules/bluetooth/sbc_primitives.c @@ -0,0 +1,469 @@ +/* + * + * Bluetooth low-complexity, subband codec (SBC) library + * + * Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org> + * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch> + * Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com> + * + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#include <stdint.h> +#include <limits.h> +#include <string.h> +#include "sbc.h" +#include "sbc_math.h" +#include "sbc_tables.h" + +#include "sbc_primitives.h" +#include "sbc_primitives_mmx.h" +#include "sbc_primitives_neon.h" + +/* + * A reference C code of analysis filter with SIMD-friendly tables + * reordering and code layout. This code can be used to develop platform + * specific SIMD optimizations. Also it may be used as some kind of test + * for compiler autovectorization capabilities (who knows, if the compiler + * is very good at this stuff, hand optimized assembly may be not strictly + * needed for some platform). + * + * Note: It is also possible to make a simple variant of analysis filter, + * which needs only a single constants table without taking care about + * even/odd cases. This simple variant of filter can be implemented without + * input data permutation. The only thing that would be lost is the + * possibility to use pairwise SIMD multiplications. But for some simple + * CPU cores without SIMD extensions it can be useful. If anybody is + * interested in implementing such variant of a filter, sourcecode from + * bluez versions 4.26/4.27 can be used as a reference and the history of + * the changes in git repository done around that time may be worth checking. + */ + +static inline void sbc_analyze_four_simd(const int16_t *in, int32_t *out, + const FIXED_T *consts) +{ + FIXED_A t1[4]; + FIXED_T t2[4]; + int hop = 0; + + /* rounding coefficient */ + t1[0] = t1[1] = t1[2] = t1[3] = + (FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1); + + /* low pass polyphase filter */ + for (hop = 0; hop < 40; hop += 8) { + t1[0] += (FIXED_A) in[hop] * consts[hop]; + t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1]; + t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2]; + t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3]; + t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4]; + t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5]; + t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6]; + t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7]; + } + + /* scaling */ + t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE; + t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE; + t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE; + t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE; + + /* do the cos transform */ + t1[0] = (FIXED_A) t2[0] * consts[40 + 0]; + t1[0] += (FIXED_A) t2[1] * consts[40 + 1]; + t1[1] = (FIXED_A) t2[0] * consts[40 + 2]; + t1[1] += (FIXED_A) t2[1] * consts[40 + 3]; + t1[2] = (FIXED_A) t2[0] * consts[40 + 4]; + t1[2] += (FIXED_A) t2[1] * consts[40 + 5]; + t1[3] = (FIXED_A) t2[0] * consts[40 + 6]; + t1[3] += (FIXED_A) t2[1] * consts[40 + 7]; + + t1[0] += (FIXED_A) t2[2] * consts[40 + 8]; + t1[0] += (FIXED_A) t2[3] * consts[40 + 9]; + t1[1] += (FIXED_A) t2[2] * consts[40 + 10]; + t1[1] += (FIXED_A) t2[3] * consts[40 + 11]; + t1[2] += (FIXED_A) t2[2] * consts[40 + 12]; + t1[2] += (FIXED_A) t2[3] * consts[40 + 13]; + t1[3] += (FIXED_A) t2[2] * consts[40 + 14]; + t1[3] += (FIXED_A) t2[3] * consts[40 + 15]; + + out[0] = t1[0] >> + (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS); + out[1] = t1[1] >> + (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS); + out[2] = t1[2] >> + (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS); + out[3] = t1[3] >> + (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS); +} + +static inline void sbc_analyze_eight_simd(const int16_t *in, int32_t *out, + const FIXED_T *consts) +{ + FIXED_A t1[8]; + FIXED_T t2[8]; + int i, hop; + + /* rounding coefficient */ + t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = + (FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1); + + /* low pass polyphase filter */ + for (hop = 0; hop < 80; hop += 16) { + t1[0] += (FIXED_A) in[hop] * consts[hop]; + t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1]; + t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2]; + t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3]; + t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4]; + t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5]; + t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6]; + t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7]; + t1[4] += (FIXED_A) in[hop + 8] * consts[hop + 8]; + t1[4] += (FIXED_A) in[hop + 9] * consts[hop + 9]; + t1[5] += (FIXED_A) in[hop + 10] * consts[hop + 10]; + t1[5] += (FIXED_A) in[hop + 11] * consts[hop + 11]; + t1[6] += (FIXED_A) in[hop + 12] * consts[hop + 12]; + t1[6] += (FIXED_A) in[hop + 13] * consts[hop + 13]; + t1[7] += (FIXED_A) in[hop + 14] * consts[hop + 14]; + t1[7] += (FIXED_A) in[hop + 15] * consts[hop + 15]; + } + + /* scaling */ + t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE; + t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE; + t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE; + t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE; + t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE; + t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE; + t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE; + t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE; + + + /* do the cos transform */ + t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = 0; + + for (i = 0; i < 4; i++) { + t1[0] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 0]; + t1[0] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 1]; + t1[1] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 2]; + t1[1] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 3]; + t1[2] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 4]; + t1[2] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 5]; + t1[3] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 6]; + t1[3] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 7]; + t1[4] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 8]; + t1[4] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 9]; + t1[5] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 10]; + t1[5] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 11]; + t1[6] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 12]; + t1[6] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 13]; + t1[7] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 14]; + t1[7] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 15]; + } + + for (i = 0; i < 8; i++) + out[i] = t1[i] >> + (SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS); +} + +static inline void sbc_analyze_4b_4s_simd(int16_t *x, + int32_t *out, int out_stride) +{ + /* Analyze blocks */ + sbc_analyze_four_simd(x + 12, out, analysis_consts_fixed4_simd_odd); + out += out_stride; + sbc_analyze_four_simd(x + 8, out, analysis_consts_fixed4_simd_even); + out += out_stride; + sbc_analyze_four_simd(x + 4, out, analysis_consts_fixed4_simd_odd); + out += out_stride; + sbc_analyze_four_simd(x + 0, out, analysis_consts_fixed4_simd_even); +} + +static inline void sbc_analyze_4b_8s_simd(int16_t *x, + int32_t *out, int out_stride) +{ + /* Analyze blocks */ + sbc_analyze_eight_simd(x + 24, out, analysis_consts_fixed8_simd_odd); + out += out_stride; + sbc_analyze_eight_simd(x + 16, out, analysis_consts_fixed8_simd_even); + out += out_stride; + sbc_analyze_eight_simd(x + 8, out, analysis_consts_fixed8_simd_odd); + out += out_stride; + sbc_analyze_eight_simd(x + 0, out, analysis_consts_fixed8_simd_even); +} + +static inline int16_t unaligned16_be(const uint8_t *ptr) +{ + return (int16_t) ((ptr[0] << 8) | ptr[1]); +} + +static inline int16_t unaligned16_le(const uint8_t *ptr) +{ + return (int16_t) (ptr[0] | (ptr[1] << 8)); +} + +/* + * Internal helper functions for input data processing. In order to get + * optimal performance, it is important to have "nsamples", "nchannels" + * and "big_endian" arguments used with this inline function as compile + * time constants. + */ + +static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s4_internal( + int position, + const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE], + int nsamples, int nchannels, int big_endian) +{ + /* handle X buffer wraparound */ + if (position < nsamples) { + if (nchannels > 0) + memcpy(&X[0][SBC_X_BUFFER_SIZE - 36], &X[0][position], + 36 * sizeof(int16_t)); + if (nchannels > 1) + memcpy(&X[1][SBC_X_BUFFER_SIZE - 36], &X[1][position], + 36 * sizeof(int16_t)); + position = SBC_X_BUFFER_SIZE - 36; + } + + #define PCM(i) (big_endian ? \ + unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2)) + + /* copy/permutate audio samples */ + while ((nsamples -= 8) >= 0) { + position -= 8; + if (nchannels > 0) { + int16_t *x = &X[0][position]; + x[0] = PCM(0 + 7 * nchannels); + x[1] = PCM(0 + 3 * nchannels); + x[2] = PCM(0 + 6 * nchannels); + x[3] = PCM(0 + 4 * nchannels); + x[4] = PCM(0 + 0 * nchannels); + x[5] = PCM(0 + 2 * nchannels); + x[6] = PCM(0 + 1 * nchannels); + x[7] = PCM(0 + 5 * nchannels); + } + if (nchannels > 1) { + int16_t *x = &X[1][position]; + x[0] = PCM(1 + 7 * nchannels); + x[1] = PCM(1 + 3 * nchannels); + x[2] = PCM(1 + 6 * nchannels); + x[3] = PCM(1 + 4 * nchannels); + x[4] = PCM(1 + 0 * nchannels); + x[5] = PCM(1 + 2 * nchannels); + x[6] = PCM(1 + 1 * nchannels); + x[7] = PCM(1 + 5 * nchannels); + } + pcm += 16 * nchannels; + } + #undef PCM + + return position; +} + +static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s8_internal( + int position, + const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE], + int nsamples, int nchannels, int big_endian) +{ + /* handle X buffer wraparound */ + if (position < nsamples) { + if (nchannels > 0) + memcpy(&X[0][SBC_X_BUFFER_SIZE - 72], &X[0][position], + 72 * sizeof(int16_t)); + if (nchannels > 1) + memcpy(&X[1][SBC_X_BUFFER_SIZE - 72], &X[1][position], + 72 * sizeof(int16_t)); + position = SBC_X_BUFFER_SIZE - 72; + } + + #define PCM(i) (big_endian ? \ + unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2)) + + /* copy/permutate audio samples */ + while ((nsamples -= 16) >= 0) { + position -= 16; + if (nchannels > 0) { + int16_t *x = &X[0][position]; + x[0] = PCM(0 + 15 * nchannels); + x[1] = PCM(0 + 7 * nchannels); + x[2] = PCM(0 + 14 * nchannels); + x[3] = PCM(0 + 8 * nchannels); + x[4] = PCM(0 + 13 * nchannels); + x[5] = PCM(0 + 9 * nchannels); + x[6] = PCM(0 + 12 * nchannels); + x[7] = PCM(0 + 10 * nchannels); + x[8] = PCM(0 + 11 * nchannels); + x[9] = PCM(0 + 3 * nchannels); + x[10] = PCM(0 + 6 * nchannels); + x[11] = PCM(0 + 0 * nchannels); + x[12] = PCM(0 + 5 * nchannels); + x[13] = PCM(0 + 1 * nchannels); + x[14] = PCM(0 + 4 * nchannels); + x[15] = PCM(0 + 2 * nchannels); + } + if (nchannels > 1) { + int16_t *x = &X[1][position]; + x[0] = PCM(1 + 15 * nchannels); + x[1] = PCM(1 + 7 * nchannels); + x[2] = PCM(1 + 14 * nchannels); + x[3] = PCM(1 + 8 * nchannels); + x[4] = PCM(1 + 13 * nchannels); + x[5] = PCM(1 + 9 * nchannels); + x[6] = PCM(1 + 12 * nchannels); + x[7] = PCM(1 + 10 * nchannels); + x[8] = PCM(1 + 11 * nchannels); + x[9] = PCM(1 + 3 * nchannels); + x[10] = PCM(1 + 6 * nchannels); + x[11] = PCM(1 + 0 * nchannels); + x[12] = PCM(1 + 5 * nchannels); + x[13] = PCM(1 + 1 * nchannels); + x[14] = PCM(1 + 4 * nchannels); + x[15] = PCM(1 + 2 * nchannels); + } + pcm += 32 * nchannels; + } + #undef PCM + + return position; +} + +/* + * Input data processing functions. The data is endian converted if needed, + * channels are deintrleaved and audio samples are reordered for use in + * SIMD-friendly analysis filter function. The results are put into "X" + * array, getting appended to the previous data (or it is better to say + * prepended, as the buffer is filled from top to bottom). Old data is + * discarded when neededed, but availability of (10 * nrof_subbands) + * contiguous samples is always guaranteed for the input to the analysis + * filter. This is achieved by copying a sufficient part of old data + * to the top of the buffer on buffer wraparound. + */ + +static int sbc_enc_process_input_4s_le(int position, + const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE], + int nsamples, int nchannels) +{ + if (nchannels > 1) + return sbc_encoder_process_input_s4_internal( + position, pcm, X, nsamples, 2, 0); + else + return sbc_encoder_process_input_s4_internal( + position, pcm, X, nsamples, 1, 0); +} + +static int sbc_enc_process_input_4s_be(int position, + const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE], + int nsamples, int nchannels) +{ + if (nchannels > 1) + return sbc_encoder_process_input_s4_internal( + position, pcm, X, nsamples, 2, 1); + else + return sbc_encoder_process_input_s4_internal( + position, pcm, X, nsamples, 1, 1); +} + +static int sbc_enc_process_input_8s_le(int position, + const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE], + int nsamples, int nchannels) +{ + if (nchannels > 1) + return sbc_encoder_process_input_s8_internal( + position, pcm, X, nsamples, 2, 0); + else + return sbc_encoder_process_input_s8_internal( + position, pcm, X, nsamples, 1, 0); +} + +static int sbc_enc_process_input_8s_be(int position, + const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE], + int nsamples, int nchannels) +{ + if (nchannels > 1) + return sbc_encoder_process_input_s8_internal( + position, pcm, X, nsamples, 2, 1); + else + return sbc_encoder_process_input_s8_internal( + position, pcm, X, nsamples, 1, 1); +} + +/* Supplementary function to count the number of leading zeros */ + +static inline int sbc_clz(uint32_t x) +{ +#ifdef __GNUC__ + return __builtin_clz(x); +#else + /* TODO: this should be replaced with something better if good + * performance is wanted when using compilers other than gcc */ + int cnt = 0; + while (x) { + cnt++; + x >>= 1; + } + return 32 - cnt; +#endif +} + +static void sbc_calc_scalefactors( + int32_t sb_sample_f[16][2][8], + uint32_t scale_factor[2][8], + int blocks, int channels, int subbands) +{ + int ch, sb, blk; + for (ch = 0; ch < channels; ch++) { + for (sb = 0; sb < subbands; sb++) { + uint32_t x = 1 << SCALE_OUT_BITS; + for (blk = 0; blk < blocks; blk++) { + int32_t tmp = fabs(sb_sample_f[blk][ch][sb]); + if (tmp != 0) + x |= tmp - 1; + } + scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) - + sbc_clz(x); + } + } +} + +/* + * Detect CPU features and setup function pointers + */ +void sbc_init_primitives(struct sbc_encoder_state *state) +{ + /* Default implementation for analyze functions */ + state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_simd; + state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_simd; + + /* Default implementation for input reordering / deinterleaving */ + state->sbc_enc_process_input_4s_le = sbc_enc_process_input_4s_le; + state->sbc_enc_process_input_4s_be = sbc_enc_process_input_4s_be; + state->sbc_enc_process_input_8s_le = sbc_enc_process_input_8s_le; + state->sbc_enc_process_input_8s_be = sbc_enc_process_input_8s_be; + + /* Default implementation for scale factors calculation */ + state->sbc_calc_scalefactors = sbc_calc_scalefactors; + + /* X86/AMD64 optimizations */ +#ifdef SBC_BUILD_WITH_MMX_SUPPORT + sbc_init_primitives_mmx(state); +#endif + + /* ARM optimizations */ +#ifdef SBC_BUILD_WITH_NEON_SUPPORT + sbc_init_primitives_neon(state); +#endif +} |