From 8934c314f6401b953b871bbf5b6810b5fe05a9ac Mon Sep 17 00:00:00 2001 From: Jason Newton Date: Fri, 31 Jul 2009 18:10:11 -0700 Subject: module-equalizer-sink: added dbus support removed cruft from inherited from ladspa module and improved clarity switched dsp processing to reference implementation until project is more mature tsched=0 seems to help with the micro-dropouts/crackling! oh my! reformatting/spaces --- configure.ac | 1 + src/Makefile.am | 2 +- src/modules/module-equalizer-sink.c | 747 ++++++++++++++++++++++-------------- 3 files changed, 462 insertions(+), 288 deletions(-) diff --git a/configure.ac b/configure.ac index 78234fc2..ebfdc2b0 100644 --- a/configure.ac +++ b/configure.ac @@ -1199,6 +1199,7 @@ if test "x${dbus}" != xno || test "x${bluez}" != xno || test "x${hal}" != xno ; HAVE_DBUS=1 saved_LIBS="$LIBS" LIBS="$LIBS $DBUS_LIBS" + CFLAGS="$CFLAGS $DBUS_CFLAGS" AC_CHECK_FUNCS(dbus_watch_get_unix_fd) LIBS="$saved_LIBS" AC_DEFINE([HAVE_DBUS], 1, [Have D-Bus.]) diff --git a/src/Makefile.am b/src/Makefile.am index 281bdf14..82bc2f9c 100644 --- a/src/Makefile.am +++ b/src/Makefile.am @@ -1385,7 +1385,7 @@ module_ladspa_sink_la_LIBADD = $(AM_LIBADD) $(LIBLTDL) libpulsecore-@PA_MAJORMIN module_equalizer_sink_la_SOURCES = modules/module-equalizer-sink.c module_equalizer_sink_la_CFLAGS = $(AM_CFLAGS) module_equalizer_sink_la_LDFLAGS = $(MODULE_LDFLAGS) -module_equalizer_sink_la_LIBADD = $(AM_LIBADD) $(LIBLTDL) -lfftw3f libpulsecore-@PA_MAJORMINORMICRO@.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la +module_equalizer_sink_la_LIBADD = $(AM_LIBADD) $(DBUS_LIBS) -lfftw3f libpulsecore-@PA_MAJORMINORMICRO@.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la module_match_la_SOURCES = modules/module-match.c module_match_la_LDFLAGS = $(MODULE_LDFLAGS) diff --git a/src/modules/module-equalizer-sink.c b/src/modules/module-equalizer-sink.c index e20e07f0..d8eb5f3d 100755 --- a/src/modules/module-equalizer-sink.c +++ b/src/modules/module-equalizer-sink.c @@ -35,7 +35,6 @@ USA. #include #include #include -#include #include #include @@ -52,6 +51,8 @@ USA. #include #include #include +#include +#include #include #include @@ -101,13 +102,18 @@ struct userdata { size_t target_samples; float *H;//frequency response filter (magnitude based) float *W;//windowing function (time domain) - float *work_buffer,**input,**overlap_accum,**output_buffer; + float *work_buffer, **input, **overlap_accum; fftwf_complex *output_window; - fftwf_plan forward_plan,inverse_plan; + fftwf_plan forward_plan, inverse_plan; //size_t samplings; + float *Hs[2];//thread updatable copies + pa_aupdate *a_H; pa_memchunk conv_buffer; pa_memblockq *rendered_q; + + pa_dbus_protocol *dbus_protocol; + char *dbus_path; }; static const char* const valid_modargs[] = { @@ -122,10 +128,10 @@ static const char* const valid_modargs[] = { }; static uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p); -static void hanning_window(float *W,size_t window_size); -static void array_out(const char *name,float *a,size_t length); +static void hanning_window(float *W, size_t window_size); +static void array_out(const char *name, float *a, size_t length); static void process_samples(struct userdata *u); -static void input_buffer(struct userdata *u,pa_memchunk *in); +static void input_buffer(struct userdata *u, pa_memchunk *in); void dsp_logic( float * __restrict__ dst, @@ -136,10 +142,17 @@ void dsp_logic( fftwf_complex * __restrict__ output_window, struct userdata *u); +static void dbus_init(struct userdata *u); +static void dbus_done(struct userdata *u); +static void handle_get_all(DBusConnection *conn, DBusMessage *msg, void *_u); +static void get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u); +static void get_filter(DBusConnection *conn, DBusMessage *msg, void *_u); +static void set_filter(DBusConnection *conn, DBusMessage *msg, void *_u); + #define v_size 4 -#define gettime(x) clock_gettime(CLOCK_MONOTONIC,&x) -#define tdiff(x,y) time_diff(&x,&y) -#define mround(x,y) (x%y==0?x:(x/y+1)*y) +#define gettime(x) clock_gettime(CLOCK_MONOTONIC, &x) +#define tdiff(x, y) time_diff(&x, &y) +#define mround(x, y) (x % y == 0 ? x : ( x / y + 1) * y) uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p) { @@ -147,26 +160,33 @@ uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p) ((timeB_p->tv_sec * 1000000000ULL) + timeB_p->tv_nsec); } -void hanning_window(float *W,size_t window_size){ +static void hanning_window(float *W, size_t window_size){ //h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2 - for(size_t i=0;isink->sample_spec; - size_t fs=pa_frame_size(&(u->sink->sample_spec)); + //size_t fs=pa_frame_size(&(u->sink->sample_spec)); /* Get the latency of the master sink */ if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0) usec = 0; - //usec+=pa_bytes_to_usec(u->latency*fs,ss); - //usec+=pa_bytes_to_usec(u->samples_gathered*fs,ss); + //usec+=pa_bytes_to_usec(u->latency * fs, ss); + //usec+=pa_bytes_to_usec(u->samples_gathered * fs, ss); usec += pa_bytes_to_usec(pa_memblockq_get_length(u->rendered_q), ss); /* Add the latency internal to our sink input on top */ usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec); @@ -243,15 +263,15 @@ static void sink_update_requested_latency(pa_sink *s) { static void process_samples(struct userdata *u){ pa_memchunk tchunk; size_t fs=pa_frame_size(&(u->sink->sample_spec)); - while(u->samples_gathered>=u->R){ + while(u->samples_gathered >= u->R){ float *dst; - //pa_log("iter gathered: %ld",u->samples_gathered); + //pa_log("iter gathered: %ld", u->samples_gathered); //pa_memblockq_drop(u->rendered_q, tchunk.length); tchunk.index=0; tchunk.length=u->R*fs; - tchunk.memblock=pa_memblock_new(u->core->mempool,tchunk.length); + tchunk.memblock=pa_memblock_new(u->core->mempool, tchunk.length); dst=((float*)pa_memblock_acquire(tchunk.memblock)); - for (size_t c=0;cchannels;c++) { + for(size_t c=0;c < u->channels; c++) { dsp_logic( u->work_buffer, u->input[c], @@ -261,7 +281,7 @@ static void process_samples(struct userdata *u){ u->output_window, u ); - pa_sample_clamp(PA_SAMPLE_FLOAT32NE,dst+c,fs,u->work_buffer,sizeof(float),u->R); + pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst + c, fs, u->work_buffer, sizeof(float), u->R); } pa_memblock_release(tchunk.memblock); pa_memblockq_push(u->rendered_q, &tchunk); @@ -279,60 +299,7 @@ typedef union float_vector { #endif } float_vector_t; -////reference implementation -//void dsp_logic( -// float * __restrict__ dst,//used as a temp array too, needs to be fft_length! -// float * __restrict__ src,/*input data w/ overlap at start, -// *automatically cycled in routine -// */ -// float * __restrict__ overlap,//The size of the overlap -// const float * __restrict__ H,//The freq. magnitude scalers filter -// const float * __restrict__ W,//The windowing function -// fftwf_complex * __restrict__ output_window,//The transformed window'd src -// struct userdata *u){ -// //use a linear-phase sliding STFT and overlap-add method (for each channel) -// //zero padd the data -// memset(dst+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float)); -// //window the data -// for(size_t j=0;jwindow_size;++j){ -// dst[j]=W[j]*src[j]; -// } -// //Processing is done here! -// //do fft -// fftwf_execute_dft_r2c(u->forward_plan,dst,output_window); -// //perform filtering -// for(size_t j=0;jfft_size/2+1;++j){ -// u->output_window[j][0]*=u->H[j]; -// u->output_window[j][1]*=u->H[j]; -// } -// //inverse fft -// fftwf_execute_dft_c2r(u->inverse_plan,output_window,dst); -// ////debug: tests overlaping add -// ////and negates ALL PREVIOUS processing -// ////yields a perfect reconstruction if COLA is held -// //for(size_t j=0;jwindow_size;++j){ -// // u->work_buffer[j]=u->W[j]*u->input[c][j]; -// //} -// -// //overlap add and preserve overlap component from this window (linear phase) -// for(size_t j=0;joverlap_size;++j){ -// u->work_buffer[j]+=overlap[j]; -// overlap[j]=dst[u->R+j]; -// } -// ////debug: tests if basic buffering works -// ////shouldn't modify the signal AT ALL (beyond roundoff) -// //for(size_t j=0;jwindow_size;++j){ -// // u->work_buffer[j]=u->input[c][j]; -// //} -// -// //preseve the needed input for the next window's overlap -// memmove(src,src+u->R, -// (u->samples_gathered+u->overlap_size-u->R)*sizeof(float) -// ); -//} - -//regardless of sse enabled, the loops in here assume -//16 byte aligned addresses and memory allocations divisible by v_size +//reference implementation void dsp_logic( float * __restrict__ dst,//used as a temp array too, needs to be fft_length! float * __restrict__ src,/*input data w/ overlap at start, @@ -342,106 +309,159 @@ void dsp_logic( const float * __restrict__ H,//The freq. magnitude scalers filter const float * __restrict__ W,//The windowing function fftwf_complex * __restrict__ output_window,//The transformed window'd src - struct userdata *u){//Collection of constants - - const size_t window_size=mround(u->window_size,v_size); - const size_t fft_h=mround(u->fft_size/2+1,v_size/2); - const size_t R=mround(u->R,v_size); - const size_t overlap_size=mround(u->overlap_size,v_size); - - //assert(u->samples_gathered>=u->R); - //zero out the bit beyond the real overlap so we don't add garbage - for(size_t j=overlap_size;j>u->overlap_size;--j){ - overlap[j-1]=0; - } - //use a linear-phase sliding STFT and overlap-add method + struct userdata *u){ + //use a linear-phase sliding STFT and overlap-add method (for each channel) //zero padd the data - memset(dst+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float)); + memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float)); //window the data - for(size_t j=0;jm=_mm_mul_ps(w->m,s->m); -#else - d->v=w->v*s->v; -#endif + for(size_t j = 0;j < u->window_size; ++j){ + dst[j] = W[j] * src[j]; } //Processing is done here! //do fft - fftwf_execute_dft_r2c(u->forward_plan,dst,output_window); - - - //perform filtering - purely magnitude based - for(size_t j=0;jm=_mm_mul_ps(d->m,h.m); -#else - d->v=d->v*h->v; -#endif + fftwf_execute_dft_r2c(u->forward_plan, dst, output_window); + //perform filtering + for(size_t j = 0;j < u->fft_size / 2 + 1; ++j){ + u->output_window[j][0] *= u->H[j]; + u->output_window[j][1] *= u->H[j]; } - - //inverse fft - fftwf_execute_dft_c2r(u->inverse_plan,output_window,dst); - + fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst); ////debug: tests overlaping add ////and negates ALL PREVIOUS processing ////yields a perfect reconstruction if COLA is held - //for(size_t j=0;jwindow_size;++j){ - // dst[j]=W[j]*src[j]; + //for(size_t j = 0; j < u->window_size; ++j){ + // u->work_buffer[j] = u->W[j] * u->input[c][j]; //} //overlap add and preserve overlap component from this window (linear phase) - for(size_t j=0;jm=_mm_add_ps(d->m,o->m); - o->m=((float_vector_t*)(dst+u->R+j))->m; -#else - d->v=d->v+o->v; - o->v=((float_vector_t*)(dst+u->R+j))->v; -#endif + for(size_t j = 0;j < u->overlap_size; ++j){ + u->work_buffer[j] += overlap[j]; + overlap[j] = dst[u->R+j]; } - //memcpy(overlap,dst+u->R,u->overlap_size*sizeof(float)); - - //////debug: tests if basic buffering works - //////shouldn't modify the signal AT ALL (beyond roundoff) - //for(size_t j=0;jwindow_size;++j){ - // dst[j]=src[j]; + ////debug: tests if basic buffering works + ////shouldn't modify the signal AT ALL (beyond roundoff) + //for(size_t j = 0; j < u->window_size;++j){ + // u->work_buffer[j] = u->input[c][j]; //} //preseve the needed input for the next window's overlap - memmove(src,src+u->R, - (u->overlap_size+u->samples_gathered-u->R)*sizeof(float) + memmove(src, src+u->R, + ((u->overlap_size + u->samples_gathered) - u->R)*sizeof(float) ); } +////regardless of sse enabled, the loops in here assume +////16 byte aligned addresses and memory allocations divisible by v_size +//void dsp_logic( +// float * __restrict__ dst,//used as a temp array too, needs to be fft_length! +// float * __restrict__ src,/*input data w/ overlap at start, +// *automatically cycled in routine +// */ +// float * __restrict__ overlap,//The size of the overlap +// const float * __restrict__ H,//The freq. magnitude scalers filter +// const float * __restrict__ W,//The windowing function +// fftwf_complex * __restrict__ output_window,//The transformed window'd src +// struct userdata *u){//Collection of constants +// +// const size_t window_size = mround(u->window_size,v_size); +// const size_t fft_h = mround(u->fft_size / 2 + 1, v_size / 2); +// //const size_t R = mround(u->R, v_size); +// const size_t overlap_size = mround(u->overlap_size, v_size); +// +// //assert(u->samples_gathered >= u->R); +// //zero out the bit beyond the real overlap so we don't add garbage +// for(size_t j = overlap_size; j > u->overlap_size; --j){ +// overlap[j-1] = 0; +// } +// //use a linear-phase sliding STFT and overlap-add method +// //zero padd the data +// memset(dst + u->window_size, 0, (u->fft_size - u->window_size)*sizeof(float)); +// //window the data +// for(size_t j = 0; j < window_size; j += v_size){ +// //dst[j] = W[j]*src[j]; +// float_vector_t *d = (float_vector_t*) (dst+j); +// float_vector_t *w = (float_vector_t*) (W+j); +// float_vector_t *s = (float_vector_t*) (src+j); +//#if __SSE2__ +// d->m = _mm_mul_ps(w->m, s->m); +//#else +// d->v = w->v * s->v; +//#endif +// } +// //Processing is done here! +// //do fft +// fftwf_execute_dft_r2c(u->forward_plan, dst, output_window); +// +// +// //perform filtering - purely magnitude based +// for(size_t j = 0;j < fft_h; j+=v_size/2){ +// //output_window[j][0]*=H[j]; +// //output_window[j][1]*=H[j]; +// float_vector_t *d = (float_vector_t*)(output_window+j); +// float_vector_t h; +// h.f[0] = h.f[1] = H[j]; +// h.f[2] = h.f[3] = H[j+1]; +//#if __SSE2__ +// d->m = _mm_mul_ps(d->m, h.m); +//#else +// d->v = d->v*h->v; +//#endif +// } +// +// +// //inverse fft +// fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst); +// +// ////debug: tests overlaping add +// ////and negates ALL PREVIOUS processing +// ////yields a perfect reconstruction if COLA is held +// //for(size_t j = 0; j < u->window_size; ++j){ +// // dst[j] = W[j]*src[j]; +// //} +// +// //overlap add and preserve overlap component from this window (linear phase) +// for(size_t j = 0; j < overlap_size; j+=v_size){ +// //dst[j]+=overlap[j]; +// //overlap[j]+=dst[j+R]; +// float_vector_t *d = (float_vector_t*)(dst+j); +// float_vector_t *o = (float_vector_t*)(overlap+j); +//#if __SSE2__ +// d->m = _mm_add_ps(d->m, o->m); +// o->m = ((float_vector_t*)(dst+u->R+j))->m; +//#else +// d->v = d->v+o->v; +// o->v = ((float_vector_t*)(dst+u->R+j))->v; +//#endif +// } +// //memcpy(overlap, dst+u->R, u->overlap_size*sizeof(float)); +// +// //////debug: tests if basic buffering works +// //////shouldn't modify the signal AT ALL (beyond roundoff) +// //for(size_t j = 0; j < u->window_size; ++j){ +// // dst[j] = src[j]; +// //} +// +// //preseve the needed input for the next window's overlap +// memmove(src, src+u->R, +// ((u->overlap_size+u->samples_gathered)+-u->R)*sizeof(float) +// ); +//} -void input_buffer(struct userdata *u,pa_memchunk *in){ - size_t fs=pa_frame_size(&(u->sink->sample_spec)); - size_t samples=in->length/fs; - pa_assert_se(samples<=u->target_samples-u->samples_gathered); + +void input_buffer(struct userdata *u, pa_memchunk *in){ + size_t fs = pa_frame_size(&(u->sink->sample_spec)); + size_t samples = in->length/fs; + pa_assert_se(samples <= u->target_samples-u->samples_gathered); float *src = (float*) ((uint8_t*) pa_memblock_acquire(in->memblock) + in->index); - for (size_t c=0;cchannels;c++) { + for(size_t c = 0; c < u->channels; c++) { //buffer with an offset after the overlap from previous //iterations pa_assert_se( - u->input[c]+u->overlap_size+u->samples_gathered+samples<=u->input[c]+u->target_samples+u->overlap_size + u->input[c]+u->overlap_size+u->samples_gathered+samples <= u->input[c]+u->overlap_size+u->target_samples ); - pa_sample_clamp(PA_SAMPLE_FLOAT32NE,u->input[c]+u->overlap_size+u->samples_gathered,sizeof(float),src+c,fs,samples); + pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input[c]+u->overlap_size+u->samples_gathered, sizeof(float), src + c, fs, samples); } u->samples_gathered+=samples; pa_memblock_release(in->memblock); @@ -454,74 +474,81 @@ static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk pa_assert(chunk); pa_assert_se(u = i->userdata); pa_assert_se(u->sink); - size_t fs=pa_frame_size(&(u->sink->sample_spec)); - size_t samples_requested=nbytes/fs; - size_t buffered_samples=pa_memblockq_get_length(u->rendered_q)/fs; + size_t fs = pa_frame_size(&(u->sink->sample_spec)); + //size_t samples_requested = nbytes/fs; + size_t buffered_samples = pa_memblockq_get_length(u->rendered_q)/fs; pa_memchunk tchunk; - chunk->memblock=NULL; + chunk->memblock = NULL; if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state)) return -1; //pa_log("start output-buffered %ld, input-buffered %ld, requested %ld",buffered_samples,u->samples_gathered,samples_requested); - struct timespec start,end; + struct timespec start, end; - if(pa_memblockq_peek(u->rendered_q,&tchunk)==0){ - *chunk=tchunk; + if(pa_memblockq_peek(u->rendered_q, &tchunk)==0){ + *chunk = tchunk; pa_memblockq_drop(u->rendered_q, chunk->length); return 0; } + + /* + Set the H filter + */ + unsigned H_i = pa_aupdate_read_begin(u->a_H); + u->H = u->Hs[H_i]; + do{ pa_memchunk *buffer; - size_t input_remaining=u->target_samples-u->samples_gathered; + size_t input_remaining = u->target_samples-u->samples_gathered; pa_assert(input_remaining>0); //collect samples - buffer=&u->conv_buffer; - buffer->length=input_remaining*fs; - buffer->index=0; + buffer = &u->conv_buffer; + buffer->length = input_remaining*fs; + buffer->index = 0; pa_memblock_ref(buffer->memblock); - pa_sink_render_into(u->sink,buffer); + pa_sink_render_into(u->sink, buffer); //if(u->sink->thread_info.rewind_requested) // sink_request_rewind(u->sink); //pa_memchunk p; - //buffer=&p; - //pa_sink_render(u->sink,u->R*fs,buffer); - //buffer->length=PA_MIN(input_remaining*fs,buffer->length); + //buffer = &p; + //pa_sink_render(u->sink, u->R*fs, buffer); + //buffer->length = PA_MIN(input_remaining*fs, buffer->length); //debug block - //pa_memblockq_push(u->rendered_q,buffer); + //pa_memblockq_push(u->rendered_q, buffer); //pa_memblock_unref(buffer->memblock); //goto END; //pa_log("asked for %ld input samples, got %ld samples",input_remaining,buffer->length/fs); //copy new input gettime(start); - input_buffer(u,buffer); + input_buffer(u, buffer); gettime(end); - //pa_log("Took %0.5f seconds to setup",tdiff(end,start)*1e-9); + //pa_log("Took %0.5f seconds to setup", tdiff(end, start)*1e-9); pa_memblock_unref(buffer->memblock); - pa_assert_se(u->fft_size>=u->window_size); - pa_assert_se(u->Rwindow_size); + pa_assert_se(u->fft_size >= u->window_size); + pa_assert_se(u->R < u->window_size); //process every complete block on hand gettime(start); process_samples(u); gettime(end); - //pa_log("Took %0.5f seconds to process",tdiff(end,start)*1e-9); + //pa_log("Took %0.5f seconds to process", tdiff(end, start)*1e-9); - buffered_samples=pa_memblockq_get_length(u->rendered_q)/fs; - }while(buffered_samplesR); + buffered_samples = pa_memblockq_get_length(u->rendered_q)/fs; + }while(buffered_samples < u->R); //deque from rendered_q and output - pa_assert_se(pa_memblockq_peek(u->rendered_q,&tchunk)==0); - *chunk=tchunk; + pa_assert_se(pa_memblockq_peek(u->rendered_q, &tchunk)==0); + *chunk = tchunk; pa_memblockq_drop(u->rendered_q, chunk->length); pa_assert_se(chunk->memblock); - //pa_log("gave %ld",chunk->length/fs); + //pa_log("gave %ld", chunk->length/fs); //pa_log("end pop"); return 0; } @@ -546,10 +573,10 @@ static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) { u->sink->thread_info.rewind_nbytes = 0; if (amount > 0) { - //pa_sample_spec *ss=&u->sink->sample_spec; + //pa_sample_spec *ss = &u->sink->sample_spec; pa_memblockq_seek(u->rendered_q, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE); pa_log_debug("Resetting equalizer"); - u->samples_gathered=0; + u->samples_gathered = 0; } } @@ -581,9 +608,9 @@ static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) { if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; - size_t fs=pa_frame_size(&(u->sink->sample_spec)); - pa_sink_set_max_request_within_thread(u->sink, nbytes); - //pa_sink_set_max_request_within_thread(u->sink, u->R*fs); + size_t fs = pa_frame_size(&(u->sink->sample_spec)); + //pa_sink_set_max_request_within_thread(u->sink, nbytes); + pa_sink_set_max_request_within_thread(u->sink, u->R*fs); } /* Called from I/O thread context */ @@ -596,9 +623,9 @@ static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) { if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; - size_t fs=pa_frame_size(&(u->sink->sample_spec)); - pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs); - //pa_sink_set_latency_range_within_thread(u->sink,u->latency*fs ,u->latency*fs ); + size_t fs = pa_frame_size(&(u->sink->sample_spec)); + //pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs); + pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs ); //pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); } @@ -631,9 +658,9 @@ static void sink_input_attach_cb(pa_sink_input *i) { pa_sink_set_rtpoll(u->sink, i->sink->rtpoll); pa_sink_attach_within_thread(u->sink); - size_t fs=pa_frame_size(&(u->sink->sample_spec)); + size_t fs = pa_frame_size(&(u->sink->sample_spec)); //pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs); - //pa_sink_set_latency_range_within_thread(u->sink,u->latency*fs, u->master->thread_info.max_latency); + //pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->master->thread_info.max_latency); //TODO: setting this guy minimizes drop outs but doesn't get rid //of them completely, figure out why pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs); @@ -689,10 +716,13 @@ static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) { //ensure's memory allocated is a multiple of v_size //and aligned static void * alloc(size_t x,size_t s){ - size_t f=mround(x*s,sizeof(float)*v_size); - //printf("requested %ld floats=%ld bytes, rem=%ld\n",x,x*sizeof(float),x*sizeof(float)%16); - //printf("giving %ld floats=%ld bytes, rem=%ld\n",f,f*sizeof(float),f*sizeof(float)%16); - return fftwf_malloc(f*s); + size_t f = mround(x*s, sizeof(float)*v_size); + pa_assert_se(f >= x*s); + //printf("requested %ld floats=%ld bytes, rem=%ld\n", x, x*sizeof(float), x*sizeof(float)%16); + //printf("giving %ld floats=%ld bytes, rem=%ld\n", f, f*sizeof(float), f*sizeof(float)%16); + float *t = fftwf_malloc(f); + memset(t, 0, f); + return t; } int pa__init(pa_module*m) { @@ -726,7 +756,7 @@ int pa__init(pa_module*m) { pa_log("Invalid sample format specification or channel map"); goto fail; } - fs=pa_frame_size(&ss); + fs = pa_frame_size(&ss); u = pa_xnew0(struct userdata, 1); u->core = m->core; @@ -736,90 +766,96 @@ int pa__init(pa_module*m) { u->sink = NULL; u->sink_input = NULL; - u->channels=ss.channels; - u->fft_size=pow(2,ceil(log(ss.rate)/log(2))); - pa_log("fft size: %ld",u->fft_size); - u->window_size=15999; - u->R=(u->window_size+1)/2; - u->overlap_size=u->window_size-u->R; - u->target_samples=1*u->R; - u->samples_gathered=0; - u->max_output=pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss); - u->rendered_q = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH,u->target_samples*fs, fs, fs, 0, 0, NULL); - u->conv_buffer.memblock=pa_memblock_new(u->core->mempool,u->target_samples*fs); - u->latency=u->R; - - u->H=alloc((u->fft_size/2+1),sizeof(fftwf_complex)); - u->W=alloc(u->window_size,sizeof(float)); - u->work_buffer=alloc(u->fft_size,sizeof(float)); - memset(u->work_buffer,0,u->fft_size*sizeof(float)); - u->input=(float **)malloc(sizeof(float *)*u->channels); - u->overlap_accum=(float **)malloc(sizeof(float *)*u->channels); - u->output_buffer=(float **)malloc(sizeof(float *)*u->channels); - for(size_t c=0;cchannels;++c){ - u->input[c]=alloc(u->target_samples+u->overlap_size,sizeof(float)); + u->channels = ss.channels; + u->fft_size = pow(2, ceil(log(ss.rate)/log(2))); + pa_log("fft size: %ld", u->fft_size); + u->window_size = 7999; + u->R = (u->window_size+1)/2; + u->overlap_size = u->window_size-u->R; + u->target_samples = 1*u->R; + u->samples_gathered = 0; + u->max_output = pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss); + u->rendered_q = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH, u->target_samples*fs, fs, fs, 0, 0, NULL); + u->a_H = pa_aupdate_new(); + u->conv_buffer.memblock = pa_memblock_new(u->core->mempool, u->target_samples*fs); + u->latency = u->R; + for(size_t i = 0; i < 2; ++i){ + u->Hs[i] = alloc((u->fft_size / 2 + 1), sizeof(float)); + } + u->W = alloc(u->window_size, sizeof(float)); + u->work_buffer = alloc(u->fft_size, sizeof(float)); + memset(u->work_buffer, 0, u->fft_size*sizeof(float)); + u->input = (float **)pa_xmalloc0(sizeof(float *)*u->channels); + u->overlap_accum = (float **)pa_xmalloc0(sizeof(float *)*u->channels); + for(size_t c = 0; c < u->channels; ++c){ + u->input[c] = alloc(u->overlap_size+u->target_samples, sizeof(float)); pa_assert_se(u->input[c]); - memset(u->input[c],0,(u->target_samples+u->overlap_size)*sizeof(float)); + memset(u->input[c], 0, (u->overlap_size+u->target_samples)*sizeof(float)); pa_assert_se(u->input[c]); - u->overlap_accum[c]=alloc(u->overlap_size,sizeof(float)); + u->overlap_accum[c] = alloc(u->overlap_size, sizeof(float)); pa_assert_se(u->overlap_accum[c]); - memset(u->overlap_accum[c],0,u->overlap_size*sizeof(float)); - u->output_buffer[c]=alloc(u->window_size,sizeof(float)); - pa_assert_se(u->output_buffer[c]); - } - u->output_window=alloc((u->fft_size/2+1),sizeof(fftwf_complex)); - u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_MEASURE); - u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_MEASURE); - - hanning_window(u->W,u->window_size); - - const int freqs[]={0,25,50,100,200,300,400,800,1500, - 2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000, - 13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX}; - const float coefficients[]={1,1,1,1,1,1,1,1,1,1, - 1,1,1,1,1,1,1,1, - 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; - const size_t ncoefficients=sizeof(coefficients)/sizeof(float); - pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float)); - float *freq_translated=(float *) malloc(sizeof(float)*(ncoefficients)); - freq_translated[0]=1; - //Translate the frequencies in their natural sampling rate to the new sampling rate frequencies - for(size_t i=1;ifft_size)/ss.rate; - //pa_log("i: %ld: %d , %g",i,freqs[i],freq_translated[i]); - pa_assert_se(freq_translated[i]>=freq_translated[i-1]); + memset(u->overlap_accum[c], 0, u->overlap_size*sizeof(float)); } - freq_translated[ncoefficients-1]=FLT_MAX; - //Interpolate the specified frequency band values - u->H[0]=1; - for(size_t i=1,j=0;i<(u->fft_size/2+1);++i){ - pa_assert_se(j=FLT_MAX){ - for(;i<(u->fft_size/2+1);++i){ - u->H[i]=coefficients[j]; - } - break; - } - //pa_log("i: %d, j: %d, freq: %f",i,j,freq_translated[j]); - //pa_log("interp: %0.4f %0.4f",freq_translated[j],freq_translated[j+1]); - pa_assert_se(freq_translated[j]=freq_translated[j]); - pa_assert_se(i<=freq_translated[j+1]); - //bilinear-inerpolation of coefficients specified - float c0=(i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]); - pa_assert_se(c0>=0&&c0<=1.0); - u->H[i]=((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]); - pa_assert_se(u->H[i]>0); - while(i>=floor(freq_translated[j+1])){ - j++; - } - } - //divide out the fft gain - for(size_t i=0;i<(u->fft_size/2+1);++i){ - u->H[i]/=u->fft_size; + u->output_window = alloc((u->fft_size / 2 + 1), sizeof(fftwf_complex)); + u->forward_plan = fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_MEASURE); + u->inverse_plan = fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_MEASURE); + + hanning_window(u->W, u->window_size); + + unsigned H_i = pa_aupdate_write_begin(u->a_H); + u->H = u->Hs[H_i]; + for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){ + u->H[i] = 1.0; } - free(freq_translated); + + //TODO cut this out and leave it for the client side + //const int freqs[] = {0,25,50,100,200,300,400,800,1500, + // 2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000, + // 13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX}; + //const float coefficients[] = {1,1,1,1,1,1,1,1,1,1, + // 1,1,1,1,1,1,1,1, + // 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; + //const size_t ncoefficients = sizeof(coefficients)/sizeof(float); + //pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float)); + //float *freq_translated = (float *) pa_xmalloc0(sizeof(float)*(ncoefficients)); + //freq_translated[0] = 1; + ////Translate the frequencies in their natural sampling rate to the new sampling rate frequencies + //for(size_t i = 1; i < ncoefficients-1; ++i){ + // freq_translated[i] = ((float)freqs[i]*u->fft_size)/ss.rate; + // //pa_log("i: %ld: %d , %g",i, freqs[i], freq_translated[i]); + // pa_assert_se(freq_translated[i] >= freq_translated[i-1]); + //} + //freq_translated[ncoefficients-1] = FLT_MAX; + // + ////Interpolate the specified frequency band values + //u->H[0] = 1; + //for(size_t i = 1, j = 0; i < (u->fft_size / 2 + 1); ++i){ + // pa_assert_se(j < ncoefficients); + // //max frequency range passed, consider the rest as one band + // if(freq_translated[j+1] >= FLT_MAX){ + // for(; i < (u->fft_size / 2 + 1); ++i){ + // u->H[i] = coefficients[j]; + // } + // break; + // } + // //pa_log("i: %d, j: %d, freq: %f", i, j, freq_translated[j]); + // //pa_log("interp: %0.4f %0.4f", freq_translated[j], freq_translated[j+1]); + // pa_assert_se(freq_translated[j] < freq_translated[j+1]); + // pa_assert_se(i >= freq_translated[j]); + // pa_assert_se(i <= freq_translated[j+1]); + // //bilinear-inerpolation of coefficients specified + // float c0 = (i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]); + // pa_assert_se(c0 >= 0&&c0 <= 1.0); + // u->H[i] = ((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]); + // pa_assert_se(u->H[i]>0); + // while(i >= floor(freq_translated[j+1])){ + // j++; + // } + //} + //pa_xfree(freq_translated); + fix_filter(u->H, u->fft_size); + pa_aupdate_write_swap(u->a_H); + pa_aupdate_write_end(u->a_H); /* Create sink */ @@ -858,8 +894,8 @@ int pa__init(pa_module*m) { pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq); pa_sink_set_rtpoll(u->sink, master->rtpoll); - pa_sink_set_max_request(u->sink,u->R*fs); - //pa_sink_set_fixed_latency(u->sink,pa_bytes_to_usec(u->R*fs,&ss)); + pa_sink_set_max_request(u->sink, u->R*fs); + //pa_sink_set_fixed_latency(u->sink, pa_bytes_to_usec(u->R*fs, &ss)); /* Create sink input */ pa_sink_input_new_data_init(&sink_input_data); @@ -896,6 +932,8 @@ int pa__init(pa_module*m) { pa_xfree(use_default); + dbus_init(u); + return 0; fail: @@ -925,6 +963,7 @@ void pa__done(pa_module*m) { if (!(u = m->userdata)) return; + dbus_done(u); if (u->sink) { pa_sink_unlink(u->sink); @@ -944,18 +983,152 @@ void pa__done(pa_module*m) { fftwf_destroy_plan(u->inverse_plan); fftwf_destroy_plan(u->forward_plan); - free(u->output_window); - for(size_t c=0;cchannels;++c){ - free(u->output_buffer[c]); - free(u->overlap_accum[c]); - free(u->input[c]); + pa_xfree(u->output_window); + for(size_t c=0; c < u->channels; ++c){ + pa_xfree(u->overlap_accum[c]); + pa_xfree(u->input[c]); + } + pa_xfree(u->overlap_accum); + pa_xfree(u->input); + pa_xfree(u->work_buffer); + pa_xfree(u->W); + for(size_t i = 0; i < 2; ++i){ + pa_xfree(u->Hs[i]); } - free(u->output_buffer); - free(u->overlap_accum); - free(u->input); - free(u->work_buffer); - free(u->W); - free(u->H); pa_xfree(u); } + +enum property_handler_index { + PROPERTY_HANDLER_N_COEFS, + PROPERTY_HANDLER_COEFS, + PROPERTY_HANDLER_MAX +}; + +static pa_dbus_property_handler property_handlers[PROPERTY_HANDLER_MAX]={ + [PROPERTY_HANDLER_N_COEFS]{.property_name="n_filter_coefficients",.type="u",.get_cb=get_n_coefs,.set_cb=NULL}, + [PROPERTY_HANDLER_COEFS]{.property_name="filter_coefficients",.type="ai",.get_cb=get_filter,.set_cb=set_filter} +}; + +//static pa_dbus_arg_info new_equalizer_args[] = { { "path","o",NULL} }; +//static pa_dbus_signal_info signals[SIGNAL_MAX] = { +// [SIGNAL_NEW_EQUALIZER]={.name="NewEqualizer",.arguments=new_equalizer_args,.n_arguments=1} +//}; + +#define EXTNAME "org.PulseAudio.Ext.Equalizing1" + +static pa_dbus_interface_info interface_info={ + .name=EXTNAME ".Equalizer", + .method_handlers=NULL, + .n_method_handlers=0, + .property_handlers=property_handlers, + .n_property_handlers=PROPERTY_HANDLER_MAX, + .get_all_properties_cb=handle_get_all, + .signals=NULL, + .n_signals=0 +}; + + +void dbus_init(struct userdata *u){ + u->dbus_protocol=pa_dbus_protocol_get(u->core); + u->dbus_path=pa_sprintf_malloc("/org/pulseaudio/core1/sink%d", u->sink->index); + + pa_dbus_protocol_add_interface(u->dbus_protocol, u->dbus_path, &interface_info, u); + pa_dbus_protocol_register_extension(u->dbus_protocol, EXTNAME); +} + +void dbus_done(struct userdata *u){ + pa_dbus_protocol_unregister_extension(u->dbus_protocol, EXTNAME); + pa_dbus_protocol_remove_interface(u->dbus_protocol, u->dbus_path, EXTNAME); + + pa_xfree(u->dbus_path); + pa_dbus_protocol_unref(u->dbus_protocol); +} + +void get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u){ + pa_assert(conn); + pa_assert(msg); + pa_assert(_u); + + struct userdata *u=(struct userdata *)_u; + + uint32_t n_coefs=(uint32_t)(u->fft_size / 2 + 1); + pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &n_coefs); +} + +void get_filter(DBusConnection *conn, DBusMessage *msg, void *_u){ + pa_assert(conn); + pa_assert(msg); + pa_assert(_u); + + struct userdata *u=(struct userdata *)_u; + + unsigned n_coefs=(unsigned)(u->fft_size / 2 + 1); + double *H_=(double *)pa_xmalloc0(n_coefs*sizeof(double)); + + unsigned H_i=pa_aupdate_read_begin(u->a_H); + float *H=u->Hs[H_i]; + for(size_t i = 0;i < u->fft_size / 2 + 1; ++i){ + H_[i]=H[i]; + } + pa_aupdate_read_end(u->a_H); + pa_dbus_send_basic_array_variant_reply(conn, msg, DBUS_TYPE_DOUBLE, &H_, n_coefs); + pa_xfree(H_); +} + +void set_filter(DBusConnection *conn, DBusMessage *msg, void *_u){ + pa_assert(conn); + pa_assert(msg); + pa_assert(_u); + + struct userdata *u=(struct userdata *)_u; + double *H_; + unsigned _n_coefs; + pa_dbus_get_fixed_array_set_property_arg(conn, msg, DBUS_TYPE_DOUBLE, &H_, &_n_coefs); + if(_n_coefs!=u->fft_size / 2 + 1){ + pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "This filter takes exactly %ld coefficients, you gave %d", u->fft_size / 2 + 1, _n_coefs); + return; + } + unsigned H_i = pa_aupdate_write_begin(u->a_H); + float *H = u->Hs[H_i]; + for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){ + H[i] = (float)H_[i]; + } + pa_aupdate_write_swap(u->a_H); + pa_aupdate_write_end(u->a_H); + + pa_dbus_send_empty_reply(conn, msg); +} + +void handle_get_all(DBusConnection *conn, DBusMessage *msg, void *_u){ + pa_assert(conn); + pa_assert(msg); + pa_assert(_u); + + struct userdata *u = (struct userdata *)_u; + DBusMessage *reply = NULL; + DBusMessageIter msg_iter, dict_iter; + + int n_coefs=(unsigned)(u->fft_size / 2 + 1); + double *H_=(double *)pa_xmalloc0(n_coefs*sizeof(double)); + + unsigned H_i=pa_aupdate_read_begin(u->a_H); + float *H=u->Hs[H_i]; + for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){ + H_[i] = H[i]; + } + pa_aupdate_read_end(u->a_H); + + pa_assert_se((reply = dbus_message_new_method_return(msg))); + dbus_message_iter_init_append(reply, &msg_iter); + pa_assert_se(dbus_message_iter_open_container(&msg_iter, DBUS_TYPE_ARRAY, "{sv}", &dict_iter)); + + pa_dbus_append_basic_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_N_COEFS].property_name, DBUS_TYPE_UINT32, &n_coefs); + pa_dbus_append_basic_array_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_COEFS].property_name, DBUS_TYPE_DOUBLE, H_, n_coefs); + + pa_assert_se(dbus_message_iter_close_container(&msg_iter, &dict_iter)); + pa_assert_se(dbus_connection_send(conn, reply, NULL)); + dbus_message_unref(reply); + + pa_xfree(H_); +} -- cgit