From 7e6309c77cefee8c447266df4bab25e544000011 Mon Sep 17 00:00:00 2001 From: Marc-André Lureau Date: Thu, 8 Jan 2009 19:13:49 +0200 Subject: bluetooth: Update sbc from git upstream. It contains encoding fixes, pass the conformance tests, and is now vectorizable. Next update might include SSE and/or Neon code. --- src/modules/bluetooth/sbc.c | 537 +++++++++++++++++-------------------- src/modules/bluetooth/sbc.h | 4 +- src/modules/bluetooth/sbc_math.h | 16 +- src/modules/bluetooth/sbc_tables.h | 250 ++++++++++++++--- 4 files changed, 460 insertions(+), 347 deletions(-) (limited to 'src') diff --git a/src/modules/bluetooth/sbc.c b/src/modules/bluetooth/sbc.c index 02a6143d..651981fa 100644 --- a/src/modules/bluetooth/sbc.c +++ b/src/modules/bluetooth/sbc.c @@ -2,7 +2,7 @@ * * Bluetooth low-complexity, subband codec (SBC) library * - * Copyright (C) 2004-2008 Marcel Holtmann + * Copyright (C) 2004-2009 Marcel Holtmann * Copyright (C) 2004-2005 Henryk Ploetz * Copyright (C) 2005-2008 Brad Midgley * @@ -40,6 +40,7 @@ #include #include #include +#include #include "sbc_math.h" #include "sbc_tables.h" @@ -68,7 +69,7 @@ struct sbc_frame { uint8_t subband_mode; uint8_t subbands; uint8_t bitpool; - uint8_t codesize; + uint16_t codesize; uint8_t length; /* bit number x set means joint stereo has been used in subband x */ @@ -93,7 +94,11 @@ struct sbc_decoder_state { struct sbc_encoder_state { int subbands; int position[2]; - int32_t X[2][160]; + int16_t X[2][256]; + void (*sbc_analyze_4b_4s)(int16_t *pcm, int16_t *x, + int32_t *out, int out_stride); + void (*sbc_analyze_4b_8s)(int16_t *pcm, int16_t *x, + int32_t *out, int out_stride); }; /* @@ -145,7 +150,7 @@ static uint8_t sbc_crc8(const uint8_t *data, size_t len) octet = data[i]; for (i = 0; i < len % 8; i++) { - unsigned char bit = ((octet ^ crc) & 0x80) >> 7; + char bit = ((octet ^ crc) & 0x80) >> 7; crc = ((crc & 0x7f) << 1) ^ (bit ? 0x1d : 0); @@ -563,7 +568,7 @@ static inline void sbc_synthesize_four(struct sbc_decoder_state *state, k = (i + 4) & 0xf; /* Store in output, Q0 */ - frame->pcm_sample[ch][blk * 4 + i] = SCALE4_STAGED2( + frame->pcm_sample[ch][blk * 4 + i] = SCALE4_STAGED1( MULA(v[offset[i] + 0], sbc_proto_4_40m0[idx + 0], MULA(v[offset[k] + 1], sbc_proto_4_40m1[idx + 0], MULA(v[offset[i] + 2], sbc_proto_4_40m0[idx + 1], @@ -609,7 +614,7 @@ static inline void sbc_synthesize_eight(struct sbc_decoder_state *state, k = (i + 8) & 0xf; /* Store in output */ - frame->pcm_sample[ch][blk * 8 + i] = SCALE8_STAGED2( // Q0 + frame->pcm_sample[ch][blk * 8 + i] = SCALE8_STAGED1( // Q0 MULA(state->V[ch][offset[i] + 0], sbc_proto_8_80m0[idx + 0], MULA(state->V[ch][offset[k] + 1], sbc_proto_8_80m1[idx + 0], MULA(state->V[ch][offset[i] + 2], sbc_proto_8_80m0[idx + 1], @@ -648,242 +653,144 @@ static int sbc_synthesize_audio(struct sbc_decoder_state *state, } } -static void sbc_encoder_init(struct sbc_encoder_state *state, - const struct sbc_frame *frame) +static inline void _sbc_analyze_four(const int16_t *in, int32_t *out) { - memset(&state->X, 0, sizeof(state->X)); - state->subbands = frame->subbands; - state->position[0] = state->position[1] = 9 * frame->subbands; -} + FIXED_A t1[4]; + FIXED_T t2[4]; + int i = 0, hop = 0; + + /* rounding coefficient */ + t1[0] = t1[1] = t1[2] = t1[3] = + (FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1); + + /* low pass polyphase filter */ + for (hop = 0; hop < 40; hop += 8) { + t1[0] += (FIXED_A) in[hop] * _sbc_proto_fixed4[hop]; + t1[1] += (FIXED_A) in[hop + 1] * _sbc_proto_fixed4[hop + 1]; + t1[2] += (FIXED_A) in[hop + 2] * _sbc_proto_fixed4[hop + 2]; + t1[1] += (FIXED_A) in[hop + 3] * _sbc_proto_fixed4[hop + 3]; + t1[0] += (FIXED_A) in[hop + 4] * _sbc_proto_fixed4[hop + 4]; + t1[3] += (FIXED_A) in[hop + 5] * _sbc_proto_fixed4[hop + 5]; + t1[3] += (FIXED_A) in[hop + 7] * _sbc_proto_fixed4[hop + 7]; + } -static inline void _sbc_analyze_four(const int32_t *in, int32_t *out) -{ - sbc_fixed_t t[8], s[5]; - - t[0] = SCALE4_STAGE1( /* Q8 */ - MULA(_sbc_proto_4[0], in[8] - in[32], /* Q18 */ - MUL( _sbc_proto_4[1], in[16] - in[24]))); - - t[1] = SCALE4_STAGE1( - MULA(_sbc_proto_4[2], in[1], - MULA(_sbc_proto_4[3], in[9], - MULA(_sbc_proto_4[4], in[17], - MULA(_sbc_proto_4[5], in[25], - MUL( _sbc_proto_4[6], in[33])))))); - - t[2] = SCALE4_STAGE1( - MULA(_sbc_proto_4[7], in[2], - MULA(_sbc_proto_4[8], in[10], - MULA(_sbc_proto_4[9], in[18], - MULA(_sbc_proto_4[10], in[26], - MUL( _sbc_proto_4[11], in[34])))))); - - t[3] = SCALE4_STAGE1( - MULA(_sbc_proto_4[12], in[3], - MULA(_sbc_proto_4[13], in[11], - MULA(_sbc_proto_4[14], in[19], - MULA(_sbc_proto_4[15], in[27], - MUL( _sbc_proto_4[16], in[35])))))); - - t[4] = SCALE4_STAGE1( - MULA(_sbc_proto_4[17], in[4] + in[36], - MULA(_sbc_proto_4[18], in[12] + in[28], - MUL( _sbc_proto_4[19], in[20])))); - - t[5] = SCALE4_STAGE1( - MULA(_sbc_proto_4[16], in[5], - MULA(_sbc_proto_4[15], in[13], - MULA(_sbc_proto_4[14], in[21], - MULA(_sbc_proto_4[13], in[29], - MUL( _sbc_proto_4[12], in[37])))))); - - /* don't compute t[6]... this term always multiplies - * with cos(pi/2) = 0 */ - - t[7] = SCALE4_STAGE1( - MULA(_sbc_proto_4[6], in[7], - MULA(_sbc_proto_4[5], in[15], - MULA(_sbc_proto_4[4], in[23], - MULA(_sbc_proto_4[3], in[31], - MUL( _sbc_proto_4[2], in[39])))))); - - s[0] = MUL( _anamatrix4[0], t[0] + t[4]); - s[1] = MUL( _anamatrix4[2], t[2]); - s[2] = MULA(_anamatrix4[1], t[1] + t[3], - MUL(_anamatrix4[3], t[5])); - s[3] = MULA(_anamatrix4[3], t[1] + t[3], - MUL(_anamatrix4[1], -t[5] + t[7])); - s[4] = MUL( _anamatrix4[3], t[7]); - - out[0] = SCALE4_STAGE2( s[0] + s[1] + s[2] + s[4]); /* Q0 */ - out[1] = SCALE4_STAGE2(-s[0] + s[1] + s[3]); - out[2] = SCALE4_STAGE2(-s[0] + s[1] - s[3]); - out[3] = SCALE4_STAGE2( s[0] + s[1] - s[2] - s[4]); + /* scaling */ + t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE; + t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE; + t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE; + t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE; + + /* do the cos transform */ + for (i = 0, hop = 0; i < 4; hop += 8, i++) { + out[i] = ((FIXED_A) t2[0] * cos_table_fixed_4[0 + hop] + + (FIXED_A) t2[1] * cos_table_fixed_4[1 + hop] + + (FIXED_A) t2[2] * cos_table_fixed_4[2 + hop] + + (FIXED_A) t2[3] * cos_table_fixed_4[5 + hop]) >> + (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS); + } } -static inline void sbc_analyze_four(struct sbc_encoder_state *state, - struct sbc_frame *frame, int ch, int blk) +static void sbc_analyze_4b_4s(int16_t *pcm, int16_t *x, + int32_t *out, int out_stride) { - int32_t *x = &state->X[ch][state->position[ch]]; - int16_t *pcm = &frame->pcm_sample[ch][blk * 4]; - - /* Input 4 Audio Samples */ - x[40] = x[0] = pcm[3]; - x[41] = x[1] = pcm[2]; - x[42] = x[2] = pcm[1]; - x[43] = x[3] = pcm[0]; - - _sbc_analyze_four(x, frame->sb_sample_f[blk][ch]); + int i; + + /* Input 4 x 4 Audio Samples */ + for (i = 0; i < 16; i += 4) { + x[64 + i] = x[0 + i] = pcm[15 - i]; + x[65 + i] = x[1 + i] = pcm[14 - i]; + x[66 + i] = x[2 + i] = pcm[13 - i]; + x[67 + i] = x[3 + i] = pcm[12 - i]; + } - state->position[ch] -= 4; - if (state->position[ch] < 0) - state->position[ch] = 36; + /* Analyze four blocks */ + _sbc_analyze_four(x + 12, out); + out += out_stride; + _sbc_analyze_four(x + 8, out); + out += out_stride; + _sbc_analyze_four(x + 4, out); + out += out_stride; + _sbc_analyze_four(x, out); } -static inline void _sbc_analyze_eight(const int32_t *in, int32_t *out) +static inline void _sbc_analyze_eight(const int16_t *in, int32_t *out) { - sbc_fixed_t t[8], s[8]; - - t[0] = SCALE8_STAGE1( /* Q10 */ - MULA(_sbc_proto_8[0], (in[16] - in[64]), /* Q18 = Q18 * Q0 */ - MULA(_sbc_proto_8[1], (in[32] - in[48]), - MULA(_sbc_proto_8[2], in[4], - MULA(_sbc_proto_8[3], in[20], - MULA(_sbc_proto_8[4], in[36], - MUL( _sbc_proto_8[5], in[52]))))))); - - t[1] = SCALE8_STAGE1( - MULA(_sbc_proto_8[6], in[2], - MULA(_sbc_proto_8[7], in[18], - MULA(_sbc_proto_8[8], in[34], - MULA(_sbc_proto_8[9], in[50], - MUL(_sbc_proto_8[10], in[66])))))); - - t[2] = SCALE8_STAGE1( - MULA(_sbc_proto_8[11], in[1], - MULA(_sbc_proto_8[12], in[17], - MULA(_sbc_proto_8[13], in[33], - MULA(_sbc_proto_8[14], in[49], - MULA(_sbc_proto_8[15], in[65], - MULA(_sbc_proto_8[16], in[3], - MULA(_sbc_proto_8[17], in[19], - MULA(_sbc_proto_8[18], in[35], - MULA(_sbc_proto_8[19], in[51], - MUL( _sbc_proto_8[20], in[67]))))))))))); - - t[3] = SCALE8_STAGE1( - MULA( _sbc_proto_8[21], in[5], - MULA( _sbc_proto_8[22], in[21], - MULA( _sbc_proto_8[23], in[37], - MULA( _sbc_proto_8[24], in[53], - MULA( _sbc_proto_8[25], in[69], - MULA(-_sbc_proto_8[15], in[15], - MULA(-_sbc_proto_8[14], in[31], - MULA(-_sbc_proto_8[13], in[47], - MULA(-_sbc_proto_8[12], in[63], - MUL( -_sbc_proto_8[11], in[79]))))))))))); - - t[4] = SCALE8_STAGE1( - MULA( _sbc_proto_8[26], in[6], - MULA( _sbc_proto_8[27], in[22], - MULA( _sbc_proto_8[28], in[38], - MULA( _sbc_proto_8[29], in[54], - MULA( _sbc_proto_8[30], in[70], - MULA(-_sbc_proto_8[10], in[14], - MULA(-_sbc_proto_8[9], in[30], - MULA(-_sbc_proto_8[8], in[46], - MULA(-_sbc_proto_8[7], in[62], - MUL( -_sbc_proto_8[6], in[78]))))))))))); - - t[5] = SCALE8_STAGE1( - MULA( _sbc_proto_8[31], in[7], - MULA( _sbc_proto_8[32], in[23], - MULA( _sbc_proto_8[33], in[39], - MULA( _sbc_proto_8[34], in[55], - MULA( _sbc_proto_8[35], in[71], - MULA(-_sbc_proto_8[20], in[13], - MULA(-_sbc_proto_8[19], in[29], - MULA(-_sbc_proto_8[18], in[45], - MULA(-_sbc_proto_8[17], in[61], - MUL( -_sbc_proto_8[16], in[77]))))))))))); - - t[6] = SCALE8_STAGE1( - MULA( _sbc_proto_8[36], (in[8] + in[72]), - MULA( _sbc_proto_8[37], (in[24] + in[56]), - MULA( _sbc_proto_8[38], in[40], - MULA(-_sbc_proto_8[39], in[12], - MULA(-_sbc_proto_8[5], in[28], - MULA(-_sbc_proto_8[4], in[44], - MULA(-_sbc_proto_8[3], in[60], - MUL( -_sbc_proto_8[2], in[76]))))))))); - - t[7] = SCALE8_STAGE1( - MULA( _sbc_proto_8[35], in[9], - MULA( _sbc_proto_8[34], in[25], - MULA( _sbc_proto_8[33], in[41], - MULA( _sbc_proto_8[32], in[57], - MULA( _sbc_proto_8[31], in[73], - MULA(-_sbc_proto_8[25], in[11], - MULA(-_sbc_proto_8[24], in[27], - MULA(-_sbc_proto_8[23], in[43], - MULA(-_sbc_proto_8[22], in[59], - MUL( -_sbc_proto_8[21], in[75]))))))))))); - - s[0] = MULA( _anamatrix8[0], t[0], - MUL( _anamatrix8[1], t[6])); - s[1] = MUL( _anamatrix8[7], t[1]); - s[2] = MULA( _anamatrix8[2], t[2], - MULA( _anamatrix8[3], t[3], - MULA( _anamatrix8[4], t[5], - MUL( _anamatrix8[5], t[7])))); - s[3] = MUL( _anamatrix8[6], t[4]); - s[4] = MULA( _anamatrix8[3], t[2], - MULA(-_anamatrix8[5], t[3], - MULA(-_anamatrix8[2], t[5], - MUL( -_anamatrix8[4], t[7])))); - s[5] = MULA( _anamatrix8[4], t[2], - MULA(-_anamatrix8[2], t[3], - MULA( _anamatrix8[5], t[5], - MUL( _anamatrix8[3], t[7])))); - s[6] = MULA( _anamatrix8[1], t[0], - MUL( -_anamatrix8[0], t[6])); - s[7] = MULA( _anamatrix8[5], t[2], - MULA(-_anamatrix8[4], t[3], - MULA( _anamatrix8[3], t[5], - MUL( -_anamatrix8[2], t[7])))); - - out[0] = SCALE8_STAGE2( s[0] + s[1] + s[2] + s[3]); - out[1] = SCALE8_STAGE2( s[1] - s[3] + s[4] + s[6]); - out[2] = SCALE8_STAGE2( s[1] - s[3] + s[5] - s[6]); - out[3] = SCALE8_STAGE2(-s[0] + s[1] + s[3] + s[7]); - out[4] = SCALE8_STAGE2(-s[0] + s[1] + s[3] - s[7]); - out[5] = SCALE8_STAGE2( s[1] - s[3] - s[5] - s[6]); - out[6] = SCALE8_STAGE2( s[1] - s[3] - s[4] + s[6]); - out[7] = SCALE8_STAGE2( s[0] + s[1] - s[2] + s[3]); + FIXED_A t1[8]; + FIXED_T t2[8]; + int i, hop; + + /* rounding coefficient */ + t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = + (FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1); + + /* low pass polyphase filter */ + for (hop = 0; hop < 80; hop += 16) { + t1[0] += (FIXED_A) in[hop] * _sbc_proto_fixed8[hop]; + t1[1] += (FIXED_A) in[hop + 1] * _sbc_proto_fixed8[hop + 1]; + t1[2] += (FIXED_A) in[hop + 2] * _sbc_proto_fixed8[hop + 2]; + t1[3] += (FIXED_A) in[hop + 3] * _sbc_proto_fixed8[hop + 3]; + t1[4] += (FIXED_A) in[hop + 4] * _sbc_proto_fixed8[hop + 4]; + t1[3] += (FIXED_A) in[hop + 5] * _sbc_proto_fixed8[hop + 5]; + t1[2] += (FIXED_A) in[hop + 6] * _sbc_proto_fixed8[hop + 6]; + t1[1] += (FIXED_A) in[hop + 7] * _sbc_proto_fixed8[hop + 7]; + t1[0] += (FIXED_A) in[hop + 8] * _sbc_proto_fixed8[hop + 8]; + t1[5] += (FIXED_A) in[hop + 9] * _sbc_proto_fixed8[hop + 9]; + t1[6] += (FIXED_A) in[hop + 10] * _sbc_proto_fixed8[hop + 10]; + t1[7] += (FIXED_A) in[hop + 11] * _sbc_proto_fixed8[hop + 11]; + t1[7] += (FIXED_A) in[hop + 13] * _sbc_proto_fixed8[hop + 13]; + t1[6] += (FIXED_A) in[hop + 14] * _sbc_proto_fixed8[hop + 14]; + t1[5] += (FIXED_A) in[hop + 15] * _sbc_proto_fixed8[hop + 15]; + } + + /* scaling */ + t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE; + t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE; + t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE; + t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE; + t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE; + t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE; + t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE; + t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE; + + /* do the cos transform */ + for (i = 0, hop = 0; i < 8; hop += 16, i++) { + out[i] = ((FIXED_A) t2[0] * cos_table_fixed_8[0 + hop] + + (FIXED_A) t2[1] * cos_table_fixed_8[1 + hop] + + (FIXED_A) t2[2] * cos_table_fixed_8[2 + hop] + + (FIXED_A) t2[3] * cos_table_fixed_8[3 + hop] + + (FIXED_A) t2[4] * cos_table_fixed_8[4 + hop] + + (FIXED_A) t2[5] * cos_table_fixed_8[9 + hop] + + (FIXED_A) t2[6] * cos_table_fixed_8[10 + hop] + + (FIXED_A) t2[7] * cos_table_fixed_8[11 + hop]) >> + (SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS); + } } -static inline void sbc_analyze_eight(struct sbc_encoder_state *state, - struct sbc_frame *frame, int ch, - int blk) +static void sbc_analyze_4b_8s(int16_t *pcm, int16_t *x, + int32_t *out, int out_stride) { - int32_t *x = &state->X[ch][state->position[ch]]; - int16_t *pcm = &frame->pcm_sample[ch][blk * 8]; - - /* Input 8 Audio Samples */ - x[80] = x[0] = pcm[7]; - x[81] = x[1] = pcm[6]; - x[82] = x[2] = pcm[5]; - x[83] = x[3] = pcm[4]; - x[84] = x[4] = pcm[3]; - x[85] = x[5] = pcm[2]; - x[86] = x[6] = pcm[1]; - x[87] = x[7] = pcm[0]; - - _sbc_analyze_eight(x, frame->sb_sample_f[blk][ch]); - - state->position[ch] -= 8; - if (state->position[ch] < 0) - state->position[ch] = 72; + int i; + + /* Input 4 x 8 Audio Samples */ + for (i = 0; i < 32; i += 8) { + x[128 + i] = x[0 + i] = pcm[31 - i]; + x[129 + i] = x[1 + i] = pcm[30 - i]; + x[130 + i] = x[2 + i] = pcm[29 - i]; + x[131 + i] = x[3 + i] = pcm[28 - i]; + x[132 + i] = x[4 + i] = pcm[27 - i]; + x[133 + i] = x[5 + i] = pcm[26 - i]; + x[134 + i] = x[6 + i] = pcm[25 - i]; + x[135 + i] = x[7 + i] = pcm[24 - i]; + } + + /* Analyze four blocks */ + _sbc_analyze_eight(x + 24, out); + out += out_stride; + _sbc_analyze_eight(x + 16, out); + out += out_stride; + _sbc_analyze_eight(x + 8, out); + out += out_stride; + _sbc_analyze_eight(x, out); } static int sbc_analyze_audio(struct sbc_encoder_state *state, @@ -894,14 +801,32 @@ static int sbc_analyze_audio(struct sbc_encoder_state *state, switch (frame->subbands) { case 4: for (ch = 0; ch < frame->channels; ch++) - for (blk = 0; blk < frame->blocks; blk++) - sbc_analyze_four(state, frame, ch, blk); + for (blk = 0; blk < frame->blocks; blk += 4) { + state->sbc_analyze_4b_4s( + &frame->pcm_sample[ch][blk * 4], + &state->X[ch][state->position[ch]], + frame->sb_sample_f[blk][ch], + frame->sb_sample_f[blk + 1][ch] - + frame->sb_sample_f[blk][ch]); + state->position[ch] -= 16; + if (state->position[ch] < 0) + state->position[ch] = 64 - 16; + } return frame->blocks * 4; case 8: for (ch = 0; ch < frame->channels; ch++) - for (blk = 0; blk < frame->blocks; blk++) - sbc_analyze_eight(state, frame, ch, blk); + for (blk = 0; blk < frame->blocks; blk += 4) { + state->sbc_analyze_4b_8s( + &frame->pcm_sample[ch][blk * 8], + &state->X[ch][state->position[ch]], + frame->sb_sample_f[blk][ch], + frame->sb_sample_f[blk + 1][ch] - + frame->sb_sample_f[blk][ch]); + state->position[ch] -= 32; + if (state->position[ch] < 0) + state->position[ch] = 128 - 32; + } return frame->blocks * 8; default: @@ -909,6 +834,26 @@ static int sbc_analyze_audio(struct sbc_encoder_state *state, } } +/* Supplementary bitstream writing macros for 'sbc_pack_frame' */ + +#define PUT_BITS(v, n)\ + bits_cache = (v) | (bits_cache << (n));\ + bits_count += (n);\ + if (bits_count >= 16) {\ + bits_count -= 8;\ + *data_ptr++ = (uint8_t) (bits_cache >> bits_count);\ + bits_count -= 8;\ + *data_ptr++ = (uint8_t) (bits_cache >> bits_count);\ + }\ + +#define FLUSH_BITS()\ + while (bits_count >= 8) {\ + bits_count -= 8;\ + *data_ptr++ = (uint8_t) (bits_cache >> bits_count);\ + }\ + if (bits_count > 0)\ + *data_ptr++ = (uint8_t) (bits_cache << (8 - bits_count));\ + /* * Packs the SBC frame from frame into the memory at data. At most len * bytes will be used, should more memory be needed an appropriate @@ -926,16 +871,21 @@ static int sbc_analyze_audio(struct sbc_encoder_state *state, static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) { - int produced; + /* Bitstream writer starts from the fourth byte */ + uint8_t *data_ptr = data + 4; + uint32_t bits_cache = 0; + uint32_t bits_count = 0; + /* Will copy the header parts for CRC-8 calculation here */ uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int crc_pos = 0; - uint16_t audio_sample; + uint32_t audio_sample; - int ch, sb, blk, bit; /* channel, subband, block and bit counters */ + int ch, sb, blk; /* channel, subband, block and bit counters */ int bits[2][8]; /* bits distribution */ - int levels[2][8]; /* levels are derived from that */ + uint32_t levels[2][8]; /* levels are derived from that */ + uint32_t sb_sample_delta[2][8]; u_int32_t scalefactor[2][8]; /* derived from frame->scale_factor */ @@ -973,8 +923,6 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) /* Can't fill in crc yet */ - produced = 32; - crc_header[0] = data[1]; crc_header[1] = data[2]; crc_pos = 16; @@ -982,7 +930,7 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) for (ch = 0; ch < frame->channels; ch++) { for (sb = 0; sb < frame->subbands; sb++) { frame->scale_factor[ch][sb] = 0; - scalefactor[ch][sb] = 2; + scalefactor[ch][sb] = 2 << SCALE_OUT_BITS; for (blk = 0; blk < frame->blocks; blk++) { while (scalefactor[ch][sb] < fabs(frame->sb_sample_f[blk][ch][sb])) { frame->scale_factor[ch][sb]++; @@ -999,22 +947,23 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) u_int32_t scalefactor_j[2]; uint8_t scale_factor_j[2]; + uint8_t joint = 0; frame->joint = 0; for (sb = 0; sb < frame->subbands - 1; sb++) { scale_factor_j[0] = 0; - scalefactor_j[0] = 2; + scalefactor_j[0] = 2 << SCALE_OUT_BITS; scale_factor_j[1] = 0; - scalefactor_j[1] = 2; + scalefactor_j[1] = 2 << SCALE_OUT_BITS; for (blk = 0; blk < frame->blocks; blk++) { /* Calculate joint stereo signal */ sb_sample_j[blk][0] = - (frame->sb_sample_f[blk][0][sb] + - frame->sb_sample_f[blk][1][sb]) >> 1; + ASR(frame->sb_sample_f[blk][0][sb], 1) + + ASR(frame->sb_sample_f[blk][1][sb], 1); sb_sample_j[blk][1] = - (frame->sb_sample_f[blk][0][sb] - - frame->sb_sample_f[blk][1][sb]) >> 1; + ASR(frame->sb_sample_f[blk][0][sb], 1) - + ASR(frame->sb_sample_f[blk][1][sb], 1); /* calculate scale_factor_j and scalefactor_j for joint case */ while (scalefactor_j[0] < fabs(sb_sample_j[blk][0])) { @@ -1028,14 +977,15 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) } /* decide whether to join this subband */ - if ((scalefactor[0][sb] + scalefactor[1][sb]) > - (scalefactor_j[0] + scalefactor_j[1]) ) { + if ((frame->scale_factor[0][sb] + + frame->scale_factor[1][sb]) > + (scale_factor_j[0] + + scale_factor_j[1])) { /* use joint stereo for this subband */ + joint |= 1 << (frame->subbands - 1 - sb); frame->joint |= 1 << sb; frame->scale_factor[0][sb] = scale_factor_j[0]; frame->scale_factor[1][sb] = scale_factor_j[1]; - scalefactor[0][sb] = scalefactor_j[0]; - scalefactor[1][sb] = scalefactor_j[1]; for (blk = 0; blk < frame->blocks; blk++) { frame->sb_sample_f[blk][0][sb] = sb_sample_j[blk][0]; @@ -1045,24 +995,16 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) } } - data[4] = 0; - for (sb = 0; sb < frame->subbands - 1; sb++) - data[4] |= ((frame->joint >> sb) & 0x01) << (frame->subbands - 1 - sb); - - crc_header[crc_pos >> 3] = data[4]; - - produced += frame->subbands; + PUT_BITS(joint, frame->subbands); + crc_header[crc_pos >> 3] = joint; crc_pos += frame->subbands; } for (ch = 0; ch < frame->channels; ch++) { for (sb = 0; sb < frame->subbands; sb++) { - data[produced >> 3] <<= 4; + PUT_BITS(frame->scale_factor[ch][sb] & 0x0F, 4); crc_header[crc_pos >> 3] <<= 4; - data[produced >> 3] |= frame->scale_factor[ch][sb] & 0x0F; crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] & 0x0F; - - produced += 4; crc_pos += 4; } } @@ -1076,37 +1018,47 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) sbc_calculate_bits(frame, bits); for (ch = 0; ch < frame->channels; ch++) { - for (sb = 0; sb < frame->subbands; sb++) - levels[ch][sb] = (1 << bits[ch][sb]) - 1; + for (sb = 0; sb < frame->subbands; sb++) { + levels[ch][sb] = ((1 << bits[ch][sb]) - 1) << + (32 - (frame->scale_factor[ch][sb] + + SCALE_OUT_BITS + 2)); + sb_sample_delta[ch][sb] = (uint32_t) 1 << + (frame->scale_factor[ch][sb] + + SCALE_OUT_BITS + 1); + } } for (blk = 0; blk < frame->blocks; blk++) { for (ch = 0; ch < frame->channels; ch++) { for (sb = 0; sb < frame->subbands; sb++) { - if (levels[ch][sb] > 0) { - audio_sample = - (uint16_t) ((((frame->sb_sample_f[blk][ch][sb]*levels[ch][sb]) >> - (frame->scale_factor[ch][sb] + 1)) + - levels[ch][sb]) >> 1); - audio_sample <<= 16 - bits[ch][sb]; - for (bit = 0; bit < bits[ch][sb]; bit++) { - data[produced >> 3] <<= 1; - if (audio_sample & 0x8000) - data[produced >> 3] |= 0x1; - audio_sample <<= 1; - produced++; - } - } + + if (bits[ch][sb] == 0) + continue; + + audio_sample = ((uint64_t) levels[ch][sb] * + (sb_sample_delta[ch][sb] + + frame->sb_sample_f[blk][ch][sb])) >> 32; + + PUT_BITS(audio_sample, bits[ch][sb]); } } } - /* align the last byte */ - if (produced % 8) { - data[produced >> 3] <<= 8 - (produced % 8); - } + FLUSH_BITS(); + + return data_ptr - data; +} + +static void sbc_encoder_init(struct sbc_encoder_state *state, + const struct sbc_frame *frame) +{ + memset(&state->X, 0, sizeof(state->X)); + state->subbands = frame->subbands; + state->position[0] = state->position[1] = 12 * frame->subbands; - return (produced + 7) >> 3; + /* Default implementation for analyze function */ + state->sbc_analyze_4b_4s = sbc_analyze_4b_4s; + state->sbc_analyze_4b_8s = sbc_analyze_4b_8s; } struct sbc_priv { @@ -1190,6 +1142,9 @@ int sbc_decode(sbc_t *sbc, void *input, int input_len, void *output, if (written) *written = 0; + if (framelen <= 0) + return framelen; + samples = sbc_synthesize_audio(&priv->dec_state, &priv->frame); ptr = output; @@ -1202,13 +1157,7 @@ int sbc_decode(sbc_t *sbc, void *input, int input_len, void *output, int16_t s; s = priv->frame.pcm_sample[ch][i]; -#if __BYTE_ORDER == __LITTLE_ENDIAN if (sbc->endian == SBC_BE) { -#elif __BYTE_ORDER == __BIG_ENDIAN - if (sbc->endian == SBC_LE) { -#else -#error "Unknown byte order" -#endif *ptr++ = (s & 0xff00) >> 8; *ptr++ = (s & 0x00ff); } else { @@ -1269,13 +1218,7 @@ int sbc_encode(sbc_t *sbc, void *input, int input_len, void *output, for (i = 0; i < priv->frame.subbands * priv->frame.blocks; i++) { for (ch = 0; ch < priv->frame.channels; ch++) { int16_t s; -#if __BYTE_ORDER == __LITTLE_ENDIAN if (sbc->endian == SBC_BE) -#elif __BYTE_ORDER == __BIG_ENDIAN - if (sbc->endian == SBC_LE) -#else -#error "Unknown byte order" -#endif s = (ptr[0] & 0xff) << 8 | (ptr[1] & 0xff); else s = (ptr[0] & 0xff) | (ptr[1] & 0xff) << 8; @@ -1374,9 +1317,9 @@ int sbc_get_frame_duration(sbc_t *sbc) return (1000000 * blocks * subbands) / frequency; } -int sbc_get_codesize(sbc_t *sbc) +uint16_t sbc_get_codesize(sbc_t *sbc) { - uint8_t subbands, channels, blocks; + uint16_t subbands, channels, blocks; struct sbc_priv *priv; priv = sbc->priv; diff --git a/src/modules/bluetooth/sbc.h b/src/modules/bluetooth/sbc.h index ab47e329..8ac59309 100644 --- a/src/modules/bluetooth/sbc.h +++ b/src/modules/bluetooth/sbc.h @@ -2,7 +2,7 @@ * * Bluetooth low-complexity, subband codec (SBC) library * - * Copyright (C) 2004-2008 Marcel Holtmann + * Copyright (C) 2004-2009 Marcel Holtmann * Copyright (C) 2004-2005 Henryk Ploetz * Copyright (C) 2005-2006 Brad Midgley * @@ -87,7 +87,7 @@ int sbc_encode(sbc_t *sbc, void *input, int input_len, void *output, int output_len, int *written); int sbc_get_frame_length(sbc_t *sbc); int sbc_get_frame_duration(sbc_t *sbc); -int sbc_get_codesize(sbc_t *sbc); +uint16_t sbc_get_codesize(sbc_t *sbc); void sbc_finish(sbc_t *sbc); #ifdef __cplusplus diff --git a/src/modules/bluetooth/sbc_math.h b/src/modules/bluetooth/sbc_math.h index b3d87a62..6ca4f526 100644 --- a/src/modules/bluetooth/sbc_math.h +++ b/src/modules/bluetooth/sbc_math.h @@ -2,7 +2,7 @@ * * Bluetooth low-complexity, subband codec (SBC) library * - * Copyright (C) 2004-2008 Marcel Holtmann + * Copyright (C) 2004-2009 Marcel Holtmann * Copyright (C) 2004-2005 Henryk Ploetz * Copyright (C) 2005-2008 Brad Midgley * @@ -29,31 +29,21 @@ #define ASR(val, bits) ((-2 >> 1 == -1) ? \ ((int32_t)(val)) >> (bits) : ((int32_t) (val)) / (1 << (bits))) -#define SCALE_PROTO4_TBL 15 -#define SCALE_ANA4_TBL 17 -#define SCALE_PROTO8_TBL 16 -#define SCALE_ANA8_TBL 17 +#define SCALE_OUT_BITS 15 + #define SCALE_SPROTO4_TBL 12 #define SCALE_SPROTO8_TBL 14 #define SCALE_NPROTO4_TBL 11 #define SCALE_NPROTO8_TBL 11 -#define SCALE4_STAGE1_BITS 15 -#define SCALE4_STAGE2_BITS 16 #define SCALE4_STAGED1_BITS 15 #define SCALE4_STAGED2_BITS 16 -#define SCALE8_STAGE1_BITS 15 -#define SCALE8_STAGE2_BITS 15 #define SCALE8_STAGED1_BITS 15 #define SCALE8_STAGED2_BITS 16 typedef int32_t sbc_fixed_t; -#define SCALE4_STAGE1(src) ASR(src, SCALE4_STAGE1_BITS) -#define SCALE4_STAGE2(src) ASR(src, SCALE4_STAGE2_BITS) #define SCALE4_STAGED1(src) ASR(src, SCALE4_STAGED1_BITS) #define SCALE4_STAGED2(src) ASR(src, SCALE4_STAGED2_BITS) -#define SCALE8_STAGE1(src) ASR(src, SCALE8_STAGE1_BITS) -#define SCALE8_STAGE2(src) ASR(src, SCALE8_STAGE2_BITS) #define SCALE8_STAGED1(src) ASR(src, SCALE8_STAGED1_BITS) #define SCALE8_STAGED2(src) ASR(src, SCALE8_STAGED2_BITS) diff --git a/src/modules/bluetooth/sbc_tables.h b/src/modules/bluetooth/sbc_tables.h index 7ac4e68b..f1dfe6c0 100644 --- a/src/modules/bluetooth/sbc_tables.h +++ b/src/modules/bluetooth/sbc_tables.h @@ -2,7 +2,7 @@ * * Bluetooth low-complexity, subband codec (SBC) library * - * Copyright (C) 2004-2008 Marcel Holtmann + * Copyright (C) 2004-2009 Marcel Holtmann * Copyright (C) 2004-2005 Henryk Ploetz * Copyright (C) 2005-2006 Brad Midgley * @@ -39,40 +39,12 @@ static const int sbc_offset8[4][8] = { { -4, 0, 0, 0, 0, 0, 1, 2 } }; -#define SP4(val) ASR(val, SCALE_PROTO4_TBL) -#define SA4(val) ASR(val, SCALE_ANA4_TBL) -#define SP8(val) ASR(val, SCALE_PROTO8_TBL) -#define SA8(val) ASR(val, SCALE_ANA8_TBL) + #define SS4(val) ASR(val, SCALE_SPROTO4_TBL) #define SS8(val) ASR(val, SCALE_SPROTO8_TBL) #define SN4(val) ASR(val, SCALE_NPROTO4_TBL) #define SN8(val) ASR(val, SCALE_NPROTO8_TBL) -static const int32_t _sbc_proto_4[20] = { - SP4(0x02cb3e8c), SP4(0x22b63dc0), SP4(0x002329cc), SP4(0x053b7548), - SP4(0x31eab940), SP4(0xec1f5e60), SP4(0xff3773a8), SP4(0x0061c5a7), - SP4(0x07646680), SP4(0x3f239480), SP4(0xf89f23a8), SP4(0x007a4737), - SP4(0x00b32807), SP4(0x083ddc80), SP4(0x4825e480), SP4(0x0191e578), - SP4(0x00ff11ca), SP4(0x00fb7991), SP4(0x069fdc58), SP4(0x4b584000) -}; - -static const int32_t _anamatrix4[4] = { - SA4(0x2d413cc0), SA4(0x3b20d780), SA4(0x40000000), SA4(0x187de2a0) -}; - -static const int32_t _sbc_proto_8[40] = { - SP8(0x02e5cd20), SP8(0x22d0c200), SP8(0x006bfe27), SP8(0x07808930), - SP8(0x3f1c8800), SP8(0xf8810d70), SP8(0x002cfdc6), SP8(0x055acf28), - SP8(0x31f566c0), SP8(0xebfe57e0), SP8(0xff27c437), SP8(0x001485cc), - SP8(0x041c6e58), SP8(0x2a7cfa80), SP8(0xe4c4a240), SP8(0xfe359e4c), - SP8(0x0048b1f8), SP8(0x0686ce30), SP8(0x38eec5c0), SP8(0xf2a1b9f0), - SP8(0xffe8904a), SP8(0x0095698a), SP8(0x0824a480), SP8(0x443b3c00), - SP8(0xfd7badc8), SP8(0x00d3e2d9), SP8(0x00c183d2), SP8(0x084e1950), - SP8(0x4810d800), SP8(0x017f43fe), SP8(0x01056dd8), SP8(0x00e9cb9f), - SP8(0x07d7d090), SP8(0x4a708980), SP8(0x0488fae8), SP8(0x0113bd20), - SP8(0x0107b1a8), SP8(0x069fb3c0), SP8(0x4b3db200), SP8(0x00763f48) -}; - static const int32_t sbc_proto_4_40m0[] = { SS4(0x00000000), SS4(0xffa6982f), SS4(0xfba93848), SS4(0x0456c7b8), SS4(0x005967d1), SS4(0xfffb9ac7), SS4(0xff589157), SS4(0xf9c2a8d8), @@ -115,11 +87,6 @@ static const int32_t sbc_proto_8_80m1[] = { SS8(0x0d9daee0), SS8(0xeac182c0), SS8(0xfdf1c8d4), SS8(0xfff5bd1a) }; -static const int32_t _anamatrix8[8] = { - SA8(0x3b20d780), SA8(0x187de2a0), SA8(0x3ec52f80), SA8(0x3536cc40), - SA8(0x238e7680), SA8(0x0c7c5c20), SA8(0x2d413cc0), SA8(0x40000000) -}; - static const int32_t synmatrix4[8][4] = { { SN4(0x05a82798), SN4(0xfa57d868), SN4(0xfa57d868), SN4(0x05a82798) }, { SN4(0x030fbc54), SN4(0xf89be510), SN4(0x07641af0), SN4(0xfcf043ac) }, @@ -165,3 +132,216 @@ static const int32_t synmatrix8[16][8] = { { SN8(0xf9592678), SN8(0x018f8b84), SN8(0x07d8a5f0), SN8(0x0471ced0), SN8(0xfb8e3130), SN8(0xf8275a10), SN8(0xfe70747c), SN8(0x06a6d988) } }; + +/* Uncomment the following line to enable high precision build of SBC encoder */ + +/* #define SBC_HIGH_PRECISION */ + +#ifdef SBC_HIGH_PRECISION +#define FIXED_A int64_t /* data type for fixed point accumulator */ +#define FIXED_T int32_t /* data type for fixed point constants */ +#define SBC_FIXED_EXTRA_BITS 16 +#else +#define FIXED_A int32_t /* data type for fixed point accumulator */ +#define FIXED_T int16_t /* data type for fixed point constants */ +#define SBC_FIXED_EXTRA_BITS 0 +#endif + +/* A2DP specification: Section 12.8 Tables + * + * Original values are premultiplied by 2 for better precision (that is the + * maximum which is possible without overflows) + * + * Note: in each block of 8 numbers sign was changed for elements 2 and 7 + * in order to compensate the same change applied to cos_table_fixed_4 + */ +#define SBC_PROTO_FIXED4_SCALE \ + ((sizeof(FIXED_T) * CHAR_BIT - 1) - SBC_FIXED_EXTRA_BITS + 1) +#define F(x) (FIXED_A) ((x * 2) * \ + ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) +static const FIXED_T _sbc_proto_fixed4[40] = { + F(0.00000000E+00), F(5.36548976E-04), + -F(1.49188357E-03), F(2.73370904E-03), + F(3.83720193E-03), F(3.89205149E-03), + F(1.86581691E-03), F(3.06012286E-03), + + F(1.09137620E-02), F(2.04385087E-02), + -F(2.88757392E-02), F(3.21939290E-02), + F(2.58767811E-02), F(6.13245186E-03), + -F(2.88217274E-02), F(7.76463494E-02), + + F(1.35593274E-01), F(1.94987841E-01), + -F(2.46636662E-01), F(2.81828203E-01), + F(2.94315332E-01), F(2.81828203E-01), + F(2.46636662E-01), -F(1.94987841E-01), + + -F(1.35593274E-01), -F(7.76463494E-02), + F(2.88217274E-02), F(6.13245186E-03), + F(2.58767811E-02), F(3.21939290E-02), + F(2.88757392E-02), -F(2.04385087E-02), + + -F(1.09137620E-02), -F(3.06012286E-03), + -F(1.86581691E-03), F(3.89205149E-03), + F(3.83720193E-03), F(2.73370904E-03), + F(1.49188357E-03), -F(5.36548976E-04), +}; +#undef F + +/* + * To produce this cosine matrix in Octave: + * + * b = zeros(4, 8); + * for i = 0:3 + * for j = 0:7 b(i+1, j+1) = cos((i + 0.5) * (j - 2) * (pi/4)) + * endfor + * endfor; + * printf("%.10f, ", b'); + * + * Note: in each block of 8 numbers sign was changed for elements 2 and 7 + * + * Change of sign for element 2 allows to replace constant 1.0 (not + * representable in Q15 format) with -1.0 (fine with Q15). + * Changed sign for element 7 allows to have more similar constants + * and simplify subband filter function code. + */ +#define SBC_COS_TABLE_FIXED4_SCALE \ + ((sizeof(FIXED_T) * CHAR_BIT - 1) + SBC_FIXED_EXTRA_BITS) +#define F(x) (FIXED_A) ((x) * \ + ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) +static const FIXED_T cos_table_fixed_4[32] = { + F(0.7071067812), F(0.9238795325), -F(1.0000000000), F(0.9238795325), + F(0.7071067812), F(0.3826834324), F(0.0000000000), F(0.3826834324), + + -F(0.7071067812), F(0.3826834324), -F(1.0000000000), F(0.3826834324), + -F(0.7071067812), -F(0.9238795325), -F(0.0000000000), -F(0.9238795325), + + -F(0.7071067812), -F(0.3826834324), -F(1.0000000000), -F(0.3826834324), + -F(0.7071067812), F(0.9238795325), F(0.0000000000), F(0.9238795325), + + F(0.7071067812), -F(0.9238795325), -F(1.0000000000), -F(0.9238795325), + F(0.7071067812), -F(0.3826834324), -F(0.0000000000), -F(0.3826834324), +}; +#undef F + +/* A2DP specification: Section 12.8 Tables + * + * Original values are premultiplied by 4 for better precision (that is the + * maximum which is possible without overflows) + * + * Note: in each block of 16 numbers sign was changed for elements 4, 13, 14, 15 + * in order to compensate the same change applied to cos_table_fixed_8 + */ +#define SBC_PROTO_FIXED8_SCALE \ + ((sizeof(FIXED_T) * CHAR_BIT - 1) - SBC_FIXED_EXTRA_BITS + 2) +#define F(x) (FIXED_A) ((x * 4) * \ + ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) +static const FIXED_T _sbc_proto_fixed8[80] = { + F(0.00000000E+00), F(1.56575398E-04), + F(3.43256425E-04), F(5.54620202E-04), + -F(8.23919506E-04), F(1.13992507E-03), + F(1.47640169E-03), F(1.78371725E-03), + F(2.01182542E-03), F(2.10371989E-03), + F(1.99454554E-03), F(1.61656283E-03), + F(9.02154502E-04), F(1.78805361E-04), + F(1.64973098E-03), F(3.49717454E-03), + + F(5.65949473E-03), F(8.02941163E-03), + F(1.04584443E-02), F(1.27472335E-02), + -F(1.46525263E-02), F(1.59045603E-02), + F(1.62208471E-02), F(1.53184106E-02), + F(1.29371806E-02), F(8.85757540E-03), + F(2.92408442E-03), -F(4.91578024E-03), + -F(1.46404076E-02), F(2.61098752E-02), + F(3.90751381E-02), F(5.31873032E-02), + + F(6.79989431E-02), F(8.29847578E-02), + F(9.75753918E-02), F(1.11196689E-01), + -F(1.23264548E-01), F(1.33264415E-01), + F(1.40753505E-01), F(1.45389847E-01), + F(1.46955068E-01), F(1.45389847E-01), + F(1.40753505E-01), F(1.33264415E-01), + F(1.23264548E-01), -F(1.11196689E-01), + -F(9.75753918E-02), -F(8.29847578E-02), + + -F(6.79989431E-02), -F(5.31873032E-02), + -F(3.90751381E-02), -F(2.61098752E-02), + F(1.46404076E-02), -F(4.91578024E-03), + F(2.92408442E-03), F(8.85757540E-03), + F(1.29371806E-02), F(1.53184106E-02), + F(1.62208471E-02), F(1.59045603E-02), + F(1.46525263E-02), -F(1.27472335E-02), + -F(1.04584443E-02), -F(8.02941163E-03), + + -F(5.65949473E-03), -F(3.49717454E-03), + -F(1.64973098E-03), -F(1.78805361E-04), + -F(9.02154502E-04), F(1.61656283E-03), + F(1.99454554E-03), F(2.10371989E-03), + F(2.01182542E-03), F(1.78371725E-03), + F(1.47640169E-03), F(1.13992507E-03), + F(8.23919506E-04), -F(5.54620202E-04), + -F(3.43256425E-04), -F(1.56575398E-04), +}; +#undef F + +/* + * To produce this cosine matrix in Octave: + * + * b = zeros(8, 16); + * for i = 0:7 + * for j = 0:15 b(i+1, j+1) = cos((i + 0.5) * (j - 4) * (pi/8)) + * endfor endfor; + * printf("%.10f, ", b'); + * + * Note: in each block of 16 numbers sign was changed for elements 4, 13, 14, 15 + * + * Change of sign for element 4 allows to replace constant 1.0 (not + * representable in Q15 format) with -1.0 (fine with Q15). + * Changed signs for elements 13, 14, 15 allow to have more similar constants + * and simplify subband filter function code. + */ +#define SBC_COS_TABLE_FIXED8_SCALE \ + ((sizeof(FIXED_T) * CHAR_BIT - 1) + SBC_FIXED_EXTRA_BITS) +#define F(x) (FIXED_A) ((x) * \ + ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) +static const FIXED_T cos_table_fixed_8[128] = { + F(0.7071067812), F(0.8314696123), F(0.9238795325), F(0.9807852804), + -F(1.0000000000), F(0.9807852804), F(0.9238795325), F(0.8314696123), + F(0.7071067812), F(0.5555702330), F(0.3826834324), F(0.1950903220), + F(0.0000000000), F(0.1950903220), F(0.3826834324), F(0.5555702330), + + -F(0.7071067812), -F(0.1950903220), F(0.3826834324), F(0.8314696123), + -F(1.0000000000), F(0.8314696123), F(0.3826834324), -F(0.1950903220), + -F(0.7071067812), -F(0.9807852804), -F(0.9238795325), -F(0.5555702330), + -F(0.0000000000), -F(0.5555702330), -F(0.9238795325), -F(0.9807852804), + + -F(0.7071067812), -F(0.9807852804), -F(0.3826834324), F(0.5555702330), + -F(1.0000000000), F(0.5555702330), -F(0.3826834324), -F(0.9807852804), + -F(0.7071067812), F(0.1950903220), F(0.9238795325), F(0.8314696123), + F(0.0000000000), F(0.8314696123), F(0.9238795325), F(0.1950903220), + + F(0.7071067812), -F(0.5555702330), -F(0.9238795325), F(0.1950903220), + -F(1.0000000000), F(0.1950903220), -F(0.9238795325), -F(0.5555702330), + F(0.7071067812), F(0.8314696123), -F(0.3826834324), -F(0.9807852804), + -F(0.0000000000), -F(0.9807852804), -F(0.3826834324), F(0.8314696123), + + F(0.7071067812), F(0.5555702330), -F(0.9238795325), -F(0.1950903220), + -F(1.0000000000), -F(0.1950903220), -F(0.9238795325), F(0.5555702330), + F(0.7071067812), -F(0.8314696123), -F(0.3826834324), F(0.9807852804), + F(0.0000000000), F(0.9807852804), -F(0.3826834324), -F(0.8314696123), + + -F(0.7071067812), F(0.9807852804), -F(0.3826834324), -F(0.5555702330), + -F(1.0000000000), -F(0.5555702330), -F(0.3826834324), F(0.9807852804), + -F(0.7071067812), -F(0.1950903220), F(0.9238795325), -F(0.8314696123), + -F(0.0000000000), -F(0.8314696123), F(0.9238795325), -F(0.1950903220), + + -F(0.7071067812), F(0.1950903220), F(0.3826834324), -F(0.8314696123), + -F(1.0000000000), -F(0.8314696123), F(0.3826834324), F(0.1950903220), + -F(0.7071067812), F(0.9807852804), -F(0.9238795325), F(0.5555702330), + -F(0.0000000000), F(0.5555702330), -F(0.9238795325), F(0.9807852804), + + F(0.7071067812), -F(0.8314696123), F(0.9238795325), -F(0.9807852804), + -F(1.0000000000), -F(0.9807852804), F(0.9238795325), -F(0.8314696123), + F(0.7071067812), -F(0.5555702330), F(0.3826834324), -F(0.1950903220), + -F(0.0000000000), -F(0.1950903220), F(0.3826834324), -F(0.5555702330), +}; +#undef F -- cgit