/* * * Bluetooth low-complexity, subband codec (SBC) library * * Copyright (C) 2004-2009 Marcel Holtmann * Copyright (C) 2004-2005 Henryk Ploetz * Copyright (C) 2005-2008 Brad Midgley * * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ /* todo items: use a log2 table for byte integer scale factors calculation (sum log2 results for high and low bytes) fill bitpool by 16 bits instead of one at a time in bits allocation/bitpool generation port to the dsp */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include "sbc_math.h" #include "sbc_tables.h" #include "sbc.h" #include "sbc_primitives.h" #define SBC_SYNCWORD 0x9C /* This structure contains an unpacked SBC frame. Yes, there is probably quite some unused space herein */ struct sbc_frame { uint8_t frequency; uint8_t block_mode; uint8_t blocks; enum { MONO = SBC_MODE_MONO, DUAL_CHANNEL = SBC_MODE_DUAL_CHANNEL, STEREO = SBC_MODE_STEREO, JOINT_STEREO = SBC_MODE_JOINT_STEREO } mode; uint8_t channels; enum { LOUDNESS = SBC_AM_LOUDNESS, SNR = SBC_AM_SNR } allocation; uint8_t subband_mode; uint8_t subbands; uint8_t bitpool; uint16_t codesize; uint8_t length; /* bit number x set means joint stereo has been used in subband x */ uint8_t joint; /* only the lower 4 bits of every element are to be used */ uint32_t scale_factor[2][8]; /* raw integer subband samples in the frame */ int32_t SBC_ALIGNED sb_sample_f[16][2][8]; /* modified subband samples */ int32_t SBC_ALIGNED sb_sample[16][2][8]; /* original pcm audio samples */ int16_t SBC_ALIGNED pcm_sample[2][16*8]; }; struct sbc_decoder_state { int subbands; int32_t V[2][170]; int offset[2][16]; }; /* * Calculates the CRC-8 of the first len bits in data */ static const uint8_t crc_table[256] = { 0x00, 0x1D, 0x3A, 0x27, 0x74, 0x69, 0x4E, 0x53, 0xE8, 0xF5, 0xD2, 0xCF, 0x9C, 0x81, 0xA6, 0xBB, 0xCD, 0xD0, 0xF7, 0xEA, 0xB9, 0xA4, 0x83, 0x9E, 0x25, 0x38, 0x1F, 0x02, 0x51, 0x4C, 0x6B, 0x76, 0x87, 0x9A, 0xBD, 0xA0, 0xF3, 0xEE, 0xC9, 0xD4, 0x6F, 0x72, 0x55, 0x48, 0x1B, 0x06, 0x21, 0x3C, 0x4A, 0x57, 0x70, 0x6D, 0x3E, 0x23, 0x04, 0x19, 0xA2, 0xBF, 0x98, 0x85, 0xD6, 0xCB, 0xEC, 0xF1, 0x13, 0x0E, 0x29, 0x34, 0x67, 0x7A, 0x5D, 0x40, 0xFB, 0xE6, 0xC1, 0xDC, 0x8F, 0x92, 0xB5, 0xA8, 0xDE, 0xC3, 0xE4, 0xF9, 0xAA, 0xB7, 0x90, 0x8D, 0x36, 0x2B, 0x0C, 0x11, 0x42, 0x5F, 0x78, 0x65, 0x94, 0x89, 0xAE, 0xB3, 0xE0, 0xFD, 0xDA, 0xC7, 0x7C, 0x61, 0x46, 0x5B, 0x08, 0x15, 0x32, 0x2F, 0x59, 0x44, 0x63, 0x7E, 0x2D, 0x30, 0x17, 0x0A, 0xB1, 0xAC, 0x8B, 0x96, 0xC5, 0xD8, 0xFF, 0xE2, 0x26, 0x3B, 0x1C, 0x01, 0x52, 0x4F, 0x68, 0x75, 0xCE, 0xD3, 0xF4, 0xE9, 0xBA, 0xA7, 0x80, 0x9D, 0xEB, 0xF6, 0xD1, 0xCC, 0x9F, 0x82, 0xA5, 0xB8, 0x03, 0x1E, 0x39, 0x24, 0x77, 0x6A, 0x4D, 0x50, 0xA1, 0xBC, 0x9B, 0x86, 0xD5, 0xC8, 0xEF, 0xF2, 0x49, 0x54, 0x73, 0x6E, 0x3D, 0x20, 0x07, 0x1A, 0x6C, 0x71, 0x56, 0x4B, 0x18, 0x05, 0x22, 0x3F, 0x84, 0x99, 0xBE, 0xA3, 0xF0, 0xED, 0xCA, 0xD7, 0x35, 0x28, 0x0F, 0x12, 0x41, 0x5C, 0x7B, 0x66, 0xDD, 0xC0, 0xE7, 0xFA, 0xA9, 0xB4, 0x93, 0x8E, 0xF8, 0xE5, 0xC2, 0xDF, 0x8C, 0x91, 0xB6, 0xAB, 0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43, 0xB2, 0xAF, 0x88, 0x95, 0xC6, 0xDB, 0xFC, 0xE1, 0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09, 0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C, 0x97, 0x8A, 0xAD, 0xB0, 0xE3, 0xFE, 0xD9, 0xC4 }; static uint8_t sbc_crc8(const uint8_t *data, size_t len) { uint8_t crc = 0x0f; size_t i; uint8_t octet; for (i = 0; i < len / 8; i++) crc = crc_table[crc ^ data[i]]; octet = data[i]; for (i = 0; i < len % 8; i++) { char bit = ((octet ^ crc) & 0x80) >> 7; crc = ((crc & 0x7f) << 1) ^ (bit ? 0x1d : 0); octet = octet << 1; } return crc; } /* * Code straight from the spec to calculate the bits array * Takes a pointer to the frame in question, a pointer to the bits array and * the sampling frequency (as 2 bit integer) */ static void sbc_calculate_bits(const struct sbc_frame *frame, int (*bits)[8]) { uint8_t sf = frame->frequency; if (frame->mode == MONO || frame->mode == DUAL_CHANNEL) { int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice; int ch, sb; for (ch = 0; ch < frame->channels; ch++) { max_bitneed = 0; if (frame->allocation == SNR) { for (sb = 0; sb < frame->subbands; sb++) { bitneed[ch][sb] = frame->scale_factor[ch][sb]; if (bitneed[ch][sb] > max_bitneed) max_bitneed = bitneed[ch][sb]; } } else { for (sb = 0; sb < frame->subbands; sb++) { if (frame->scale_factor[ch][sb] == 0) bitneed[ch][sb] = -5; else { if (frame->subbands == 4) loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb]; else loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb]; if (loudness > 0) bitneed[ch][sb] = loudness / 2; else bitneed[ch][sb] = loudness; } if (bitneed[ch][sb] > max_bitneed) max_bitneed = bitneed[ch][sb]; } } bitcount = 0; slicecount = 0; bitslice = max_bitneed + 1; do { bitslice--; bitcount += slicecount; slicecount = 0; for (sb = 0; sb < frame->subbands; sb++) { if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16)) slicecount++; else if (bitneed[ch][sb] == bitslice + 1) slicecount += 2; } } while (bitcount + slicecount < frame->bitpool); if (bitcount + slicecount == frame->bitpool) { bitcount += slicecount; bitslice--; } for (sb = 0; sb < frame->subbands; sb++) { if (bitneed[ch][sb] < bitslice + 2) bits[ch][sb] = 0; else { bits[ch][sb] = bitneed[ch][sb] - bitslice; if (bits[ch][sb] > 16) bits[ch][sb] = 16; } } for (sb = 0; bitcount < frame->bitpool && sb < frame->subbands; sb++) { if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) { bits[ch][sb]++; bitcount++; } else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) { bits[ch][sb] = 2; bitcount += 2; } } for (sb = 0; bitcount < frame->bitpool && sb < frame->subbands; sb++) { if (bits[ch][sb] < 16) { bits[ch][sb]++; bitcount++; } } } } else if (frame->mode == STEREO || frame->mode == JOINT_STEREO) { int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice; int ch, sb; max_bitneed = 0; if (frame->allocation == SNR) { for (ch = 0; ch < 2; ch++) { for (sb = 0; sb < frame->subbands; sb++) { bitneed[ch][sb] = frame->scale_factor[ch][sb]; if (bitneed[ch][sb] > max_bitneed) max_bitneed = bitneed[ch][sb]; } } } else { for (ch = 0; ch < 2; ch++) { for (sb = 0; sb < frame->subbands; sb++) { if (frame->scale_factor[ch][sb] == 0) bitneed[ch][sb] = -5; else { if (frame->subbands == 4) loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb]; else loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb]; if (loudness > 0) bitneed[ch][sb] = loudness / 2; else bitneed[ch][sb] = loudness; } if (bitneed[ch][sb] > max_bitneed) max_bitneed = bitneed[ch][sb]; } } } bitcount = 0; slicecount = 0; bitslice = max_bitneed + 1; do { bitslice--; bitcount += slicecount; slicecount = 0; for (ch = 0; ch < 2; ch++) { for (sb = 0; sb < frame->subbands; sb++) { if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16)) slicecount++; else if (bitneed[ch][sb] == bitslice + 1) slicecount += 2; } } } while (bitcount + slicecount < frame->bitpool); if (bitcount + slicecount == frame->bitpool) { bitcount += slicecount; bitslice--; } for (ch = 0; ch < 2; ch++) { for (sb = 0; sb < frame->subbands; sb++) { if (bitneed[ch][sb] < bitslice + 2) { bits[ch][sb] = 0; } else { bits[ch][sb] = bitneed[ch][sb] - bitslice; if (bits[ch][sb] > 16) bits[ch][sb] = 16; } } } ch = 0; sb = 0; while (bitcount < frame->bitpool) { if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) { bits[ch][sb]++; bitcount++; } else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) { bits[ch][sb] = 2; bitcount += 2; } if (ch == 1) { ch = 0; sb++; if (sb >= frame->subbands) break; } else ch = 1; } ch = 0; sb = 0; while (bitcount < frame->bitpool) { if (bits[ch][sb] < 16) { bits[ch][sb]++; bitcount++; } if (ch == 1) { ch = 0; sb++; if (sb >= frame->subbands) break; } else ch = 1; } } } /* * Unpacks a SBC frame at the beginning of the stream in data, * which has at most len bytes into frame. * Returns the length in bytes of the packed frame, or a negative * value on error. The error codes are: * * -1 Data stream too short * -2 Sync byte incorrect * -3 CRC8 incorrect * -4 Bitpool value out of bounds */ static int sbc_unpack_frame(const uint8_t *data, struct sbc_frame *frame, size_t len) { unsigned int consumed; /* Will copy the parts of the header that are relevant to crc * calculation here */ uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int crc_pos = 0; int32_t temp; int audio_sample; int ch, sb, blk, bit; /* channel, subband, block and bit standard counters */ int bits[2][8]; /* bits distribution */ uint32_t levels[2][8]; /* levels derived from that */ if (len < 4) return -1; if (data[0] != SBC_SYNCWORD) return -2; frame->frequency = (data[1] >> 6) & 0x03; frame->block_mode = (data[1] >> 4) & 0x03; switch (frame->block_mode) { case SBC_BLK_4: frame->blocks = 4; break; case SBC_BLK_8: frame->blocks = 8; break; case SBC_BLK_12: frame->blocks = 12; break; case SBC_BLK_16: frame->blocks = 16; break; } frame->mode = (data[1] >> 2) & 0x03; switch (frame->mode) { case MONO: frame->channels = 1; break; case DUAL_CHANNEL: /* fall-through */ case STEREO: case JOINT_STEREO: frame->channels = 2; break; } frame->allocation = (data[1] >> 1) & 0x01; frame->subband_mode = (data[1] & 0x01); frame->subbands = frame->subband_mode ? 8 : 4; frame->bitpool = data[2]; if ((frame->mode == MONO || frame->mode == DUAL_CHANNEL) && frame->bitpool > 16 * frame->subbands) return -4; if ((frame->mode == STEREO || frame->mode == JOINT_STEREO) && frame->bitpool > 32 * frame->subbands) return -4; /* data[3] is crc, we're checking it later */ consumed = 32; crc_header[0] = data[1]; crc_header[1] = data[2]; crc_pos = 16; if (frame->mode == JOINT_STEREO) { if (len * 8 < consumed + frame->subbands) return -1; frame->joint = 0x00; for (sb = 0; sb < frame->subbands - 1; sb++) frame->joint |= ((data[4] >> (7 - sb)) & 0x01) << sb; if (frame->subbands == 4) crc_header[crc_pos / 8] = data[4] & 0xf0; else crc_header[crc_pos / 8] = data[4]; consumed += frame->subbands; crc_pos += frame->subbands; } if (len * 8 < consumed + (4 * frame->subbands * frame->channels)) return -1; for (ch = 0; ch < frame->channels; ch++) { for (sb = 0; sb < frame->subbands; sb++) { /* FIXME assert(consumed % 4 == 0); */ frame->scale_factor[ch][sb] = (data[consumed >> 3] >> (4 - (consumed & 0x7))) & 0x0F; crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] << (4 - (crc_pos & 0x7)); consumed += 4; crc_pos += 4; } } if (data[3] != sbc_crc8(crc_header, crc_pos)) return -3; sbc_calculate_bits(frame, bits); for (ch = 0; ch < frame->channels; ch++) { for (sb = 0; sb < frame->subbands; sb++) levels[ch][sb] = (1 << bits[ch][sb]) - 1; } for (blk = 0; blk < frame->blocks; blk++) { for (ch = 0; ch < frame->channels; ch++) { for (sb = 0; sb < frame->subbands; sb++) { if (levels[ch][sb] > 0) { audio_sample = 0; for (bit = 0; bit < bits[ch][sb]; bit++) { if (consumed > len * 8) return -1; if ((data[consumed >> 3] >> (7 - (consumed & 0x7))) & 0x01) audio_sample |= 1 << (bits[ch][sb] - bit - 1); consumed++; } frame->sb_sample[blk][ch][sb] = (((audio_sample << 1) | 1) << frame->scale_factor[ch][sb]) / levels[ch][sb] - (1 << frame->scale_factor[ch][sb]); } else frame->sb_sample[blk][ch][sb] = 0; } } } if (frame->mode == JOINT_STEREO) { for (blk = 0; blk < frame->blocks; blk++) { for (sb = 0; sb < frame->subbands; sb++) { if (frame->joint & (0x01 << sb)) { temp = frame->sb_sample[blk][0][sb] + frame->sb_sample[blk][1][sb]; frame->sb_sample[blk][1][sb] = frame->sb_sample[blk][0][sb] - frame->sb_sample[blk][1][sb]; frame->sb_sample[blk][0][sb] = temp; } } } } if ((consumed & 0x7) != 0) consumed += 8 - (consumed & 0x7); return consumed >> 3; } static void sbc_decoder_init(struct sbc_decoder_state *state, const struct sbc_frame *frame) { int i, ch; memset(state->V, 0, sizeof(state->V)); state->subbands = frame->subbands; for (ch = 0; ch < 2; ch++) for (i = 0; i < frame->subbands * 2; i++) state->offset[ch][i] = (10 * i + 10); } static inline void sbc_synthesize_four(struct sbc_decoder_state *state, struct sbc_frame *frame, int ch, int blk) { int i, k, idx; int32_t *v = state->V[ch]; int *offset = state->offset[ch]; for (i = 0; i < 8; i++) { /* Shifting */ offset[i]--; if (offset[i] < 0) { offset[i] = 79; memcpy(v + 80, v, 9 * sizeof(*v)); } /* Distribute the new matrix value to the shifted position */ v[offset[i]] = SCALE4_STAGED1( MULA(synmatrix4[i][0], frame->sb_sample[blk][ch][0], MULA(synmatrix4[i][1], frame->sb_sample[blk][ch][1], MULA(synmatrix4[i][2], frame->sb_sample[blk][ch][2], MUL (synmatrix4[i][3], frame->sb_sample[blk][ch][3]))))); } /* Compute the samples */ for (idx = 0, i = 0; i < 4; i++, idx += 5) { k = (i + 4) & 0xf; /* Store in output, Q0 */ frame->pcm_sample[ch][blk * 4 + i] = SCALE4_STAGED1( MULA(v[offset[i] + 0], sbc_proto_4_40m0[idx + 0], MULA(v[offset[k] + 1], sbc_proto_4_40m1[idx + 0], MULA(v[offset[i] + 2], sbc_proto_4_40m0[idx + 1], MULA(v[offset[k] + 3], sbc_proto_4_40m1[idx + 1], MULA(v[offset[i] + 4], sbc_proto_4_40m0[idx + 2], MULA(v[offset[k] + 5], sbc_proto_4_40m1[idx + 2], MULA(v[offset[i] + 6], sbc_proto_4_40m0[idx + 3], MULA(v[offset[k] + 7], sbc_proto_4_40m1[idx + 3], MULA(v[offset[i] + 8], sbc_proto_4_40m0[idx + 4], MUL( v[offset[k] + 9], sbc_proto_4_40m1[idx + 4]))))))))))); } } static inline void sbc_synthesize_eight(struct sbc_decoder_state *state, struct sbc_frame *frame, int ch, int blk) { int i, j, k, idx; int *offset = state->offset[ch]; for (i = 0; i < 16; i++) { /* Shifting */ offset[i]--; if (offset[i] < 0) { offset[i] = 159; for (j = 0; j < 9; j++) state->V[ch][j + 160] = state->V[ch][j]; } /* Distribute the new matrix value to the shifted position */ state->V[ch][offset[i]] = SCALE8_STAGED1( MULA(synmatrix8[i][0], frame->sb_sample[blk][ch][0], MULA(synmatrix8[i][1], frame->sb_sample[blk][ch][1], MULA(synmatrix8[i][2], frame->sb_sample[blk][ch][2], MULA(synmatrix8[i][3], frame->sb_sample[blk][ch][3], MULA(synmatrix8[i][4], frame->sb_sample[blk][ch][4], MULA(synmatrix8[i][5], frame->sb_sample[blk][ch][5], MULA(synmatrix8[i][6], frame->sb_sample[blk][ch][6], MUL( synmatrix8[i][7], frame->sb_sample[blk][ch][7]))))))))); } /* Compute the samples */ for (idx = 0, i = 0; i < 8; i++, idx += 5) { k = (i + 8) & 0xf; /* Store in output */ frame->pcm_sample[ch][blk * 8 + i] = SCALE8_STAGED1( // Q0 MULA(state->V[ch][offset[i] + 0], sbc_proto_8_80m0[idx + 0], MULA(state->V[ch][offset[k] + 1], sbc_proto_8_80m1[idx + 0], MULA(state->V[ch][offset[i] + 2], sbc_proto_8_80m0[idx + 1], MULA(state->V[ch][offset[k] + 3], sbc_proto_8_80m1[idx + 1], MULA(state->V[ch][offset[i] + 4], sbc_proto_8_80m0[idx + 2], MULA(state->V[ch][offset[k] + 5], sbc_proto_8_80m1[idx + 2], MULA(state->V[ch][offset[i] + 6], sbc_proto_8_80m0[idx + 3], MULA(state->V[ch][offset[k] + 7], sbc_proto_8_80m1[idx + 3], MULA(state->V[ch][offset[i] + 8], sbc_proto_8_80m0[idx + 4], MUL( state->V[ch][offset[k] + 9], sbc_proto_8_80m1[idx + 4]))))))))))); } } static int sbc_synthesize_audio(struct sbc_decoder_state *state, struct sbc_frame *frame) { int ch, blk; switch (frame->subbands) { case 4: for (ch = 0; ch < frame->channels; ch++) { for (blk = 0; blk < frame->blocks; blk++) sbc_synthesize_four(state, frame, ch, blk); } return frame->blocks * 4; case 8: for (ch = 0; ch < frame->channels; ch++) { for (blk = 0; blk < frame->blocks; blk++) sbc_synthesize_eight(state, frame, ch, blk); } return frame->blocks * 8; default: return -EIO; } } static int sbc_analyze_audio(struct sbc_encoder_state *state, struct sbc_frame *frame) { int ch, blk; int16_t *x; switch (frame->subbands) { case 4: for (ch = 0; ch < frame->channels; ch++) { x = &state->X[ch][state->position - 16 + frame->blocks * 4]; for (blk = 0; blk < frame->blocks; blk += 4) { state->sbc_analyze_4b_4s( x, frame->sb_sample_f[blk][ch], frame->sb_sample_f[blk + 1][ch] - frame->sb_sample_f[blk][ch]); x -= 16; } } return frame->blocks * 4; case 8: for (ch = 0; ch < frame->channels; ch++) { x = &state->X[ch][state->position - 32 + frame->blocks * 8]; for (blk = 0; blk < frame->blocks; blk += 4) { state->sbc_analyze_4b_8s( x, frame->sb_sample_f[blk][ch], frame->sb_sample_f[blk + 1][ch] - frame->sb_sample_f[blk][ch]); x -= 32; } } return frame->blocks * 8; default: return -EIO; } } /* Supplementary bitstream writing macros for 'sbc_pack_frame' */ #define PUT_BITS(data_ptr, bits_cache, bits_count, v, n) \ do { \ bits_cache = (v) | (bits_cache << (n)); \ bits_count += (n); \ if (bits_count >= 16) { \ bits_count -= 8; \ *data_ptr++ = (uint8_t) \ (bits_cache >> bits_count); \ bits_count -= 8; \ *data_ptr++ = (uint8_t) \ (bits_cache >> bits_count); \ } \ } while (0) #define FLUSH_BITS(data_ptr, bits_cache, bits_count) \ do { \ while (bits_count >= 8) { \ bits_count -= 8; \ *data_ptr++ = (uint8_t) \ (bits_cache >> bits_count); \ } \ if (bits_count > 0) \ *data_ptr++ = (uint8_t) \ (bits_cache << (8 - bits_count)); \ } while (0) /* * Packs the SBC frame from frame into the memory at data. At most len * bytes will be used, should more memory be needed an appropriate * error code will be returned. Returns the length of the packed frame * on success or a negative value on error. * * The error codes are: * -1 Not enough memory reserved * -2 Unsupported sampling rate * -3 Unsupported number of blocks * -4 Unsupported number of subbands * -5 Bitpool value out of bounds * -99 not implemented */ static SBC_ALWAYS_INLINE int sbc_pack_frame_internal( uint8_t *data, struct sbc_frame *frame, size_t len, int frame_subbands, int frame_channels) { /* Bitstream writer starts from the fourth byte */ uint8_t *data_ptr = data + 4; uint32_t bits_cache = 0; uint32_t bits_count = 0; /* Will copy the header parts for CRC-8 calculation here */ uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int crc_pos = 0; uint32_t audio_sample; int ch, sb, blk; /* channel, subband, block and bit counters */ int bits[2][8]; /* bits distribution */ uint32_t levels[2][8]; /* levels are derived from that */ uint32_t sb_sample_delta[2][8]; data[0] = SBC_SYNCWORD; data[1] = (frame->frequency & 0x03) << 6; data[1] |= (frame->block_mode & 0x03) << 4; data[1] |= (frame->mode & 0x03) << 2; data[1] |= (frame->allocation & 0x01) << 1; switch (frame_subbands) { case 4: /* Nothing to do */ break; case 8: data[1] |= 0x01; break; default: return -4; break; } data[2] = frame->bitpool; if ((frame->mode == MONO || frame->mode == DUAL_CHANNEL) && frame->bitpool > frame_subbands << 4) return -5; if ((frame->mode == STEREO || frame->mode == JOINT_STEREO) && frame->bitpool > frame_subbands << 5) return -5; /* Can't fill in crc yet */ crc_header[0] = data[1]; crc_header[1] = data[2]; crc_pos = 16; if (frame->mode == JOINT_STEREO) { /* like frame->sb_sample but joint stereo */ int32_t sb_sample_j[16][2]; /* scalefactor and scale_factor in joint case */ uint32_t scalefactor_j[2]; uint8_t scale_factor_j[2]; uint8_t joint = 0; frame->joint = 0; for (sb = 0; sb < frame_subbands - 1; sb++) { scale_factor_j[0] = 0; scalefactor_j[0] = 2 << SCALE_OUT_BITS; scale_factor_j[1] = 0; scalefactor_j[1] = 2 << SCALE_OUT_BITS; for (blk = 0; blk < frame->blocks; blk++) { uint32_t tmp; /* Calculate joint stereo signal */ sb_sample_j[blk][0] = ASR(frame->sb_sample_f[blk][0][sb], 1) + ASR(frame->sb_sample_f[blk][1][sb], 1); sb_sample_j[blk][1] = ASR(frame->sb_sample_f[blk][0][sb], 1) - ASR(frame->sb_sample_f[blk][1][sb], 1); /* calculate scale_factor_j and scalefactor_j for joint case */ tmp = fabs(sb_sample_j[blk][0]); while (scalefactor_j[0] < tmp) { scale_factor_j[0]++; scalefactor_j[0] *= 2; } tmp = fabs(sb_sample_j[blk][1]); while (scalefactor_j[1] < tmp) { scale_factor_j[1]++; scalefactor_j[1] *= 2; } } /* decide whether to join this subband */ if ((frame->scale_factor[0][sb] + frame->scale_factor[1][sb]) > (scale_factor_j[0] + scale_factor_j[1])) { /* use joint stereo for this subband */ joint |= 1 << (frame_subbands - 1 - sb); frame->joint |= 1 << sb; frame->scale_factor[0][sb] = scale_factor_j[0]; frame->scale_factor[1][sb] = scale_factor_j[1]; for (blk = 0; blk < frame->blocks; blk++) { frame->sb_sample_f[blk][0][sb] = sb_sample_j[blk][0]; frame->sb_sample_f[blk][1][sb] = sb_sample_j[blk][1]; } } } PUT_BITS(data_ptr, bits_cache, bits_count, joint, frame_subbands); crc_header[crc_pos >> 3] = joint; crc_pos += frame_subbands; } for (ch = 0; ch < frame_channels; ch++) { for (sb = 0; sb < frame_subbands; sb++) { PUT_BITS(data_ptr, bits_cache, bits_count, frame->scale_factor[ch][sb] & 0x0F, 4); crc_header[crc_pos >> 3] <<= 4; crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] & 0x0F; crc_pos += 4; } } /* align the last crc byte */ if (crc_pos % 8) crc_header[crc_pos >> 3] <<= 8 - (crc_pos % 8); data[3] = sbc_crc8(crc_header, crc_pos); sbc_calculate_bits(frame, bits); for (ch = 0; ch < frame_channels; ch++) { for (sb = 0; sb < frame_subbands; sb++) { levels[ch][sb] = ((1 << bits[ch][sb]) - 1) << (32 - (frame->scale_factor[ch][sb] + SCALE_OUT_BITS + 2)); sb_sample_delta[ch][sb] = (uint32_t) 1 << (frame->scale_factor[ch][sb] + SCALE_OUT_BITS + 1); } } for (blk = 0; blk < frame->blocks; blk++) { for (ch = 0; ch < frame_channels; ch++) { for (sb = 0; sb < frame_subbands; sb++) { if (bits[ch][sb] == 0) continue; audio_sample = ((uint64_t) levels[ch][sb] * (sb_sample_delta[ch][sb] + frame->sb_sample_f[blk][ch][sb])) >> 32; PUT_BITS(data_ptr, bits_cache, bits_count, audio_sample, bits[ch][sb]); } } } FLUSH_BITS(data_ptr, bits_cache, bits_count); return data_ptr - data; } static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) { if (frame->subbands == 4) { if (frame->channels == 1) return sbc_pack_frame_internal(data, frame, len, 4, 1); else return sbc_pack_frame_internal(data, frame, len, 4, 2); } else { if (frame->channels == 1) return sbc_pack_frame_internal(data, frame, len, 8, 1); else return sbc_pack_frame_internal(data, frame, len, 8, 2); } } static void sbc_encoder_init(struct sbc_encoder_state *state, const struct sbc_frame *frame) { memset(&state->X, 0, sizeof(state->X)); state->position = SBC_X_BUFFER_SIZE - frame->subbands * 9; sbc_init_primitives(state); } struct sbc_priv { int init; struct SBC_ALIGNED sbc_frame frame; struct SBC_ALIGNED sbc_decoder_state dec_state; struct SBC_ALIGNED sbc_encoder_state enc_state; }; static void sbc_set_defaults(sbc_t *sbc, unsigned long flags) { sbc->frequency = SBC_FREQ_44100; sbc->mode = SBC_MODE_STEREO; sbc->subbands = SBC_SB_8; sbc->blocks = SBC_BLK_16; sbc->bitpool = 32; #if __BYTE_ORDER == __LITTLE_ENDIAN sbc->endian = SBC_LE; #elif __BYTE_ORDER == __BIG_ENDIAN sbc->endian = SBC_BE; #else #error "Unknown byte order" #endif } int sbc_init(sbc_t *sbc, unsigned long flags) { if (!sbc) return -EIO; memset(sbc, 0, sizeof(sbc_t)); sbc->priv_alloc_base = malloc(sizeof(struct sbc_priv) + SBC_ALIGN_MASK); if (!sbc->priv_alloc_base) return -ENOMEM; sbc->priv = (void *) (((uintptr_t) sbc->priv_alloc_base + SBC_ALIGN_MASK) & ~((uintptr_t) SBC_ALIGN_MASK)); memset(sbc->priv, 0, sizeof(struct sbc_priv)); sbc_set_defaults(sbc, flags); return 0; } ssize_t sbc_parse(sbc_t *sbc, const void *input, size_t input_len) { return sbc_decode(sbc, input, input_len, NULL, 0, NULL); } ssize_t sbc_decode(sbc_t *sbc, const void *input, size_t input_len, void *output, size_t output_len, size_t *written) { struct sbc_priv *priv; char *ptr; int i, ch, framelen, samples; if (!sbc || !input) return -EIO; priv = sbc->priv; framelen = sbc_unpack_frame(input, &priv->frame, input_len); if (!priv->init) { sbc_decoder_init(&priv->dec_state, &priv->frame); priv->init = 1; sbc->frequency = priv->frame.frequency; sbc->mode = priv->frame.mode; sbc->subbands = priv->frame.subband_mode; sbc->blocks = priv->frame.block_mode; sbc->allocation = priv->frame.allocation; sbc->bitpool = priv->frame.bitpool; priv->frame.codesize = sbc_get_codesize(sbc); priv->frame.length = sbc_get_frame_length(sbc); } if (!output) return framelen; if (written) *written = 0; if (framelen <= 0) return framelen; samples = sbc_synthesize_audio(&priv->dec_state, &priv->frame); ptr = output; if (output_len < (size_t) (samples * priv->frame.channels * 2)) samples = output_len / (priv->frame.channels * 2); for (i = 0; i < samples; i++) { for (ch = 0; ch < priv->frame.channels; ch++) { int16_t s; s = priv->frame.pcm_sample[ch][i]; if (sbc->endian == SBC_BE) { *ptr++ = (s & 0xff00) >> 8; *ptr++ = (s & 0x00ff); } else { *ptr++ = (s & 0x00ff); *ptr++ = (s & 0xff00) >> 8; } } } if (written) *written = samples * priv->frame.channels * 2; return framelen; } ssize_t sbc_encode(sbc_t *sbc, const void *input, size_t input_len, void *output, size_t output_len, size_t *written) { struct sbc_priv *priv; int framelen, samples; int (*sbc_enc_process_input)(int position, const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE], int nsamples, int nchannels); if (!sbc || !input) return -EIO; priv = sbc->priv; if (written) *written = 0; if (!priv->init) { priv->frame.frequency = sbc->frequency; priv->frame.mode = sbc->mode; priv->frame.channels = sbc->mode == SBC_MODE_MONO ? 1 : 2; priv->frame.allocation = sbc->allocation; priv->frame.subband_mode = sbc->subbands; priv->frame.subbands = sbc->subbands ? 8 : 4; priv->frame.block_mode = sbc->blocks; priv->frame.blocks = 4 + (sbc->blocks * 4); priv->frame.bitpool = sbc->bitpool; priv->frame.codesize = sbc_get_codesize(sbc); priv->frame.length = sbc_get_frame_length(sbc); sbc_encoder_init(&priv->enc_state, &priv->frame); priv->init = 1; } /* input must be large enough to encode a complete frame */ if (input_len < priv->frame.codesize) return 0; /* output must be large enough to receive the encoded frame */ if (!output || output_len < priv->frame.length) return -ENOSPC; /* Select the needed input data processing function and call it */ if (priv->frame.subbands == 8) { if (sbc->endian == SBC_BE) sbc_enc_process_input = priv->enc_state.sbc_enc_process_input_8s_be; else sbc_enc_process_input = priv->enc_state.sbc_enc_process_input_8s_le; } else { if (sbc->endian == SBC_BE) sbc_enc_process_input = priv->enc_state.sbc_enc_process_input_4s_be; else sbc_enc_process_input = priv->enc_state.sbc_enc_process_input_4s_le; } priv->enc_state.position = sbc_enc_process_input( priv->enc_state.position, (const uint8_t *) input, priv->enc_state.X, priv->frame.subbands * priv->frame.blocks, priv->frame.channels); samples = sbc_analyze_audio(&priv->enc_state, &priv->frame); priv->enc_state.sbc_calc_scalefactors( priv->frame.sb_sample_f, priv->frame.scale_factor, priv->frame.blocks, priv->frame.channels, priv->frame.subbands); framelen = sbc_pack_frame(output, &priv->frame, output_len); if (written) *written = framelen; return samples * priv->frame.channels * 2; } void sbc_finish(sbc_t *sbc) { if (!sbc) return; if (sbc->priv_alloc_base) free(sbc->priv_alloc_base); memset(sbc, 0, sizeof(sbc_t)); } size_t sbc_get_frame_length(sbc_t *sbc) { size_t ret; uint8_t subbands, channels, blocks, joint; struct sbc_priv *priv; priv = sbc->priv; if (!priv->init) { subbands = sbc->subbands ? 8 : 4; blocks = 4 + (sbc->blocks * 4); channels = sbc->mode == SBC_MODE_MONO ? 1 : 2; joint = sbc->mode == SBC_MODE_JOINT_STEREO ? 1 : 0; } else { subbands = priv->frame.subbands; blocks = priv->frame.blocks; channels = priv->frame.channels; joint = priv->frame.joint; } ret = 4 + (4 * subbands * channels) / 8; /* This term is not always evenly divide so we round it up */ if (channels == 1) ret += ((blocks * channels * sbc->bitpool) + 7) / 8; else ret += (((joint ? subbands : 0) + blocks * sbc->bitpool) + 7) / 8; return ret; } unsigned sbc_get_frame_duration(sbc_t *sbc) { uint8_t subbands, blocks; uint16_t frequency; struct sbc_priv *priv; priv = sbc->priv; if (!priv->init) { subbands = sbc->subbands ? 8 : 4; blocks = 4 + (sbc->blocks * 4); } else { subbands = priv->frame.subbands; blocks = priv->frame.blocks; } switch (sbc->frequency) { case SBC_FREQ_16000: frequency = 16000; break; case SBC_FREQ_32000: frequency = 32000; break; case SBC_FREQ_44100: frequency = 44100; break; case SBC_FREQ_48000: frequency = 48000; break; default: return 0; } return (1000000 * blocks * subbands) / frequency; } size_t sbc_get_codesize(sbc_t *sbc) { uint16_t subbands, channels, blocks; struct sbc_priv *priv; priv = sbc->priv; if (!priv->init) { subbands = sbc->subbands ? 8 : 4; blocks = 4 + (sbc->blocks * 4); channels = sbc->mode == SBC_MODE_MONO ? 1 : 2; } else { subbands = priv->frame.subbands; blocks = priv->frame.blocks; channels = priv->frame.channels; } return subbands * blocks * channels * 2; } const char *sbc_get_implementation_info(sbc_t *sbc) { struct sbc_priv *priv; if (!sbc) return NULL; priv = sbc->priv; if (!priv) return NULL; return priv->enc_state.implementation_info; } int sbc_reinit(sbc_t *sbc, unsigned long flags) { struct sbc_priv *priv; if (!sbc || !sbc->priv) return -EIO; priv = sbc->priv; if (priv->init == 1) memset(sbc->priv, 0, sizeof(struct sbc_priv)); sbc_set_defaults(sbc, flags); return 0; }