/*** This file is part of PulseAudio. Copyright 2004-2006 Lennart Poettering PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "module-combine-symdef.h" PA_MODULE_AUTHOR("Lennart Poettering"); PA_MODULE_DESCRIPTION("Combine multiple sinks to one"); PA_MODULE_VERSION(PACKAGE_VERSION); PA_MODULE_LOAD_ONCE(FALSE); PA_MODULE_USAGE( "sink_name= " "master= " "slaves= " "adjust_time= " "resample_method= " "format= " "channels= " "rate= " "channel_map="); #define DEFAULT_SINK_NAME "combined" #define MEMBLOCKQ_MAXLENGTH (1024*1024*16) #define DEFAULT_ADJUST_TIME 10 static const char* const valid_modargs[] = { "sink_name", "master", "slaves", "adjust_time", "resample_method", "format", "channels", "rate", "channel_map", NULL }; struct output { struct userdata *userdata; pa_sink *sink; pa_sink_input *sink_input; pa_asyncmsgq *inq, /* Message queue from the sink thread to this sink input */ *outq; /* Message queue from this sink input to the sink thread */ pa_rtpoll_item *inq_rtpoll_item, *outq_rtpoll_item; pa_memblockq *memblockq; pa_usec_t total_latency; PA_LLIST_FIELDS(struct output); }; struct userdata { pa_core *core; pa_module *module; pa_sink *sink; pa_thread *thread; pa_thread_mq thread_mq; pa_rtpoll *rtpoll; pa_time_event *time_event; uint32_t adjust_time; pa_bool_t automatic; size_t block_size; pa_hook_slot *sink_new_slot, *sink_unlink_slot, *sink_state_changed_slot; pa_resample_method_t resample_method; struct timeval adjust_timestamp; struct output *master; pa_idxset* outputs; /* managed in main context */ struct { PA_LLIST_HEAD(struct output, active_outputs); /* managed in IO thread context */ pa_atomic_t running; /* we cache that value here, so that every thread can query it cheaply */ struct timeval timestamp; pa_bool_t in_null_mode; } thread_info; }; enum { SINK_MESSAGE_ADD_OUTPUT = PA_SINK_MESSAGE_MAX, SINK_MESSAGE_REMOVE_OUTPUT, SINK_MESSAGE_NEED }; enum { SINK_INPUT_MESSAGE_POST = PA_SINK_INPUT_MESSAGE_MAX, }; static void output_free(struct output *o); static int output_create_sink_input(struct output *o); static void update_master(struct userdata *u, struct output *o); static void pick_master(struct userdata *u, struct output *except); static void adjust_rates(struct userdata *u) { struct output *o; pa_usec_t max_sink_latency = 0, min_total_latency = (pa_usec_t) -1, target_latency; uint32_t base_rate; uint32_t idx; pa_assert(u); pa_sink_assert_ref(u->sink); if (pa_idxset_size(u->outputs) <= 0) return; if (!u->master) return; if (!PA_SINK_IS_OPENED(pa_sink_get_state(u->sink))) return; for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) { pa_usec_t sink_latency; if (!o->sink_input || !PA_SINK_IS_OPENED(pa_sink_get_state(o->sink))) continue; sink_latency = pa_sink_get_latency(o->sink); o->total_latency = sink_latency + pa_sink_input_get_latency(o->sink_input); if (sink_latency > max_sink_latency) max_sink_latency = sink_latency; if (min_total_latency == (pa_usec_t) -1 || o->total_latency < min_total_latency) min_total_latency = o->total_latency; } if (min_total_latency == (pa_usec_t) -1) return; target_latency = max_sink_latency > min_total_latency ? max_sink_latency : min_total_latency; pa_log_info("[%s] target latency is %0.0f usec.", u->sink->name, (float) target_latency); pa_log_info("[%s] master %s latency %0.0f usec.", u->sink->name, u->master->sink->name, (float) u->master->total_latency); base_rate = u->sink->sample_spec.rate; for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) { uint32_t r = base_rate; if (!o->sink_input || !PA_SINK_IS_OPENED(pa_sink_get_state(o->sink))) continue; if (o->total_latency < target_latency) r -= (uint32_t) (((((double) target_latency - o->total_latency))/u->adjust_time)*r/PA_USEC_PER_SEC); else if (o->total_latency > target_latency) r += (uint32_t) (((((double) o->total_latency - target_latency))/u->adjust_time)*r/PA_USEC_PER_SEC); if (r < (uint32_t) (base_rate*0.9) || r > (uint32_t) (base_rate*1.1)) { pa_log_warn("[%s] sample rates too different, not adjusting (%u vs. %u).", pa_proplist_gets(o->sink_input->proplist, PA_PROP_MEDIA_NAME), base_rate, r); pa_sink_input_set_rate(o->sink_input, base_rate); } else { pa_log_info("[%s] new rate is %u Hz; ratio is %0.3f; latency is %0.0f usec.", pa_proplist_gets(o->sink_input->proplist, PA_PROP_MEDIA_NAME), r, (double) r / base_rate, (float) o->total_latency); pa_sink_input_set_rate(o->sink_input, r); } } } static void time_callback(pa_mainloop_api*a, pa_time_event* e, const struct timeval *tv, void *userdata) { struct userdata *u = userdata; struct timeval n; pa_assert(u); pa_assert(a); pa_assert(u->time_event == e); adjust_rates(u); pa_gettimeofday(&n); n.tv_sec += u->adjust_time; u->sink->core->mainloop->time_restart(e, &n); } static void thread_func(void *userdata) { struct userdata *u = userdata; pa_assert(u); pa_log_debug("Thread starting up"); if (u->core->realtime_scheduling) pa_make_realtime(u->core->realtime_priority+1); pa_thread_mq_install(&u->thread_mq); pa_rtpoll_install(u->rtpoll); pa_rtclock_get(&u->thread_info.timestamp); u->thread_info.in_null_mode = FALSE; for (;;) { int ret; /* If no outputs are connected, render some data and drop it immediately. */ if (u->sink->thread_info.state == PA_SINK_RUNNING && !u->thread_info.active_outputs) { struct timeval now; /* Just rewind if necessary, since we are in NULL mode, we * don't have to pass this on */ pa_sink_process_rewind(u->sink, u->sink->thread_info.rewind_nbytes); u->sink->thread_info.rewind_nbytes = 0; pa_rtclock_get(&now); if (!u->thread_info.in_null_mode || pa_timeval_cmp(&u->thread_info.timestamp, &now) <= 0) { pa_memchunk chunk; pa_sink_render_full(u->sink, u->block_size, &chunk); pa_memblock_unref(chunk.memblock); if (!u->thread_info.in_null_mode) u->thread_info.timestamp = now; pa_timeval_add(&u->thread_info.timestamp, pa_bytes_to_usec(u->block_size, &u->sink->sample_spec)); } pa_rtpoll_set_timer_absolute(u->rtpoll, &u->thread_info.timestamp); u->thread_info.in_null_mode = TRUE; } else { pa_rtpoll_set_timer_disabled(u->rtpoll); u->thread_info.in_null_mode = FALSE; } /* Hmm, nothing to do. Let's sleep */ if ((ret = pa_rtpoll_run(u->rtpoll, TRUE)) < 0) { pa_log_info("pa_rtpoll_run() = %i", ret); goto fail; } if (ret == 0) goto finish; } fail: /* If this was no regular exit from the loop we have to continue * processing messages until we received PA_MESSAGE_SHUTDOWN */ pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL); pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN); finish: pa_log_debug("Thread shutting down"); } /* Called from I/O thread context */ static void render_memblock(struct userdata *u, struct output *o, size_t length) { pa_assert(u); pa_assert(o); /* We are run by the sink thread, on behalf of an output (o). The * other output is waiting for us, hence it is safe to access its * mainblockq and asyncmsgq directly. */ /* If we are not running, we cannot produce any data */ if (!pa_atomic_load(&u->thread_info.running)) return; /* Maybe there's some data in the requesting output's queue * now? */ while (pa_asyncmsgq_process_one(o->inq) > 0) ; /* Ok, now let's prepare some data if we really have to */ while (!pa_memblockq_is_readable(o->memblockq)) { struct output *j; pa_memchunk chunk; /* Render data! */ pa_sink_render(u->sink, length, &chunk); /* OK, let's send this data to the other threads */ for (j = u->thread_info.active_outputs; j; j = j->next) /* Send to other outputs, which are not the requesting * one */ if (j != o) pa_asyncmsgq_post(j->inq, PA_MSGOBJECT(j->sink_input), SINK_INPUT_MESSAGE_POST, NULL, 0, &chunk, NULL); /* And place it directly into the requesting output's queue */ if (o) pa_memblockq_push_align(o->memblockq, &chunk); pa_memblock_unref(chunk.memblock); } } /* Called from I/O thread context */ static void request_memblock(struct output *o, size_t length) { pa_assert(o); pa_sink_input_assert_ref(o->sink_input); pa_sink_assert_ref(o->userdata->sink); /* If another thread already prepared some data we received * the data over the asyncmsgq, hence let's first process * it. */ while (pa_asyncmsgq_process_one(o->inq) > 0) ; /* Check whether we're now readable */ if (pa_memblockq_is_readable(o->memblockq)) return; /* OK, we need to prepare new data, but only if the sink is actually running */ if (pa_atomic_load(&o->userdata->thread_info.running)) pa_asyncmsgq_send(o->outq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_NEED, o, length, NULL); } /* Called from I/O thread context */ static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) { struct output *o; pa_sink_input_assert_ref(i); pa_assert_se(o = i->userdata); /* If necessary, get some new data */ request_memblock(o, nbytes); if (pa_memblockq_peek(o->memblockq, chunk) < 0) return -1; pa_memblockq_drop(o->memblockq, chunk->length); return 0; } /* Called from I/O thread context */ static void sink_input_attach_cb(pa_sink_input *i) { struct output *o; pa_sink_input_assert_ref(i); pa_assert_se(o = i->userdata); /* Set up the queue from the sink thread to us */ pa_assert(!o->inq_rtpoll_item); o->inq_rtpoll_item = pa_rtpoll_item_new_asyncmsgq_read( i->sink->rtpoll, PA_RTPOLL_LATE, /* This one is not that important, since we check for data in _peek() anyway. */ o->inq); } /* Called from I/O thread context */ static void sink_input_detach_cb(pa_sink_input *i) { struct output *o; pa_sink_input_assert_ref(i); pa_assert_se(o = i->userdata); /* Shut down the queue from the sink thread to us */ pa_assert(o->inq_rtpoll_item); pa_rtpoll_item_free(o->inq_rtpoll_item); o->inq_rtpoll_item = NULL; } /* Called from main context */ static void sink_input_kill_cb(pa_sink_input *i) { struct output *o; pa_sink_input_assert_ref(i); pa_assert(o = i->userdata); pa_module_unload_request(o->userdata->module); output_free(o); } /* Called from thread context */ static int sink_input_process_msg(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct output *o = PA_SINK_INPUT(obj)->userdata; switch (code) { case PA_SINK_INPUT_MESSAGE_GET_LATENCY: { pa_usec_t *r = data; *r = pa_bytes_to_usec(pa_memblockq_get_length(o->memblockq), &o->sink_input->sample_spec); /* Fall through, the default handler will add in the extra * latency added by the resampler */ break; } case SINK_INPUT_MESSAGE_POST: if (PA_SINK_IS_OPENED(o->sink_input->sink->thread_info.state)) pa_memblockq_push_align(o->memblockq, chunk); else pa_memblockq_flush(o->memblockq); break; } return pa_sink_input_process_msg(obj, code, data, offset, chunk); } /* Called from main context */ static void disable_output(struct output *o) { pa_assert(o); if (!o->sink_input) return; pa_asyncmsgq_send(o->userdata->sink->asyncmsgq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_REMOVE_OUTPUT, o, 0, NULL); pa_sink_input_unlink(o->sink_input); pa_sink_input_unref(o->sink_input); o->sink_input = NULL; } /* Called from main context */ static void enable_output(struct output *o) { pa_assert(o); if (o->sink_input) return; if (output_create_sink_input(o) >= 0) { pa_memblockq_flush(o->memblockq); pa_sink_input_put(o->sink_input); if (o->userdata->sink && PA_SINK_IS_LINKED(pa_sink_get_state(o->userdata->sink))) pa_asyncmsgq_send(o->userdata->sink->asyncmsgq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_ADD_OUTPUT, o, 0, NULL); } } /* Called from main context */ static void suspend(struct userdata *u) { struct output *o; uint32_t idx; pa_assert(u); /* Let's suspend by unlinking all streams */ for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) disable_output(o); pick_master(u, NULL); pa_log_info("Device suspended..."); } /* Called from main context */ static void unsuspend(struct userdata *u) { struct output *o; uint32_t idx; pa_assert(u); /* Let's resume */ for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) { pa_sink_suspend(o->sink, FALSE); if (PA_SINK_IS_OPENED(pa_sink_get_state(o->sink))) enable_output(o); } pick_master(u, NULL); pa_log_info("Resumed successfully..."); } /* Called from main context */ static int sink_set_state(pa_sink *sink, pa_sink_state_t state) { struct userdata *u; pa_sink_assert_ref(sink); pa_assert_se(u = sink->userdata); /* Please note that in contrast to the ALSA modules we call * suspend/unsuspend from main context here! */ switch (state) { case PA_SINK_SUSPENDED: pa_assert(PA_SINK_IS_OPENED(pa_sink_get_state(u->sink))); suspend(u); break; case PA_SINK_IDLE: case PA_SINK_RUNNING: if (pa_sink_get_state(u->sink) == PA_SINK_SUSPENDED) unsuspend(u); break; case PA_SINK_UNLINKED: case PA_SINK_INIT: ; } return 0; } /* Called from thread context of the master */ static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SINK(o)->userdata; switch (code) { case PA_SINK_MESSAGE_SET_STATE: pa_atomic_store(&u->thread_info.running, PA_PTR_TO_UINT(data) == PA_SINK_RUNNING); break; case PA_SINK_MESSAGE_GET_LATENCY: /* This code will only be called when running in NULL * mode, i.e. when no output is attached. See * sink_get_latency_cb() below */ if (u->thread_info.in_null_mode) { struct timeval now; if (pa_timeval_cmp(&u->thread_info.timestamp, pa_rtclock_get(&now)) > 0) { *((pa_usec_t*) data) = pa_timeval_diff(&u->thread_info.timestamp, &now); break; } } *((pa_usec_t*) data) = 0; break; case SINK_MESSAGE_ADD_OUTPUT: { struct output *op = data; PA_LLIST_PREPEND(struct output, u->thread_info.active_outputs, op); pa_assert(!op->outq_rtpoll_item); /* Create pa_asyncmsgq to the sink thread */ op->outq_rtpoll_item = pa_rtpoll_item_new_asyncmsgq_read( u->rtpoll, PA_RTPOLL_EARLY-1, /* This item is very important */ op->outq); return 0; } case SINK_MESSAGE_REMOVE_OUTPUT: { struct output *op = data; PA_LLIST_REMOVE(struct output, u->thread_info.active_outputs, op); /* Remove the q that leads from this output to the sink thread */ pa_assert(op->outq_rtpoll_item); pa_rtpoll_item_free(op->outq_rtpoll_item); op->outq_rtpoll_item = NULL; return 0; } case SINK_MESSAGE_NEED: render_memblock(u, data, (size_t) offset); return 0; } return pa_sink_process_msg(o, code, data, offset, chunk); } /* Called from main context */ /* static pa_usec_t sink_get_latency_cb(pa_sink *s) { */ /* struct userdata *u; */ /* pa_sink_assert_ref(s); */ /* pa_assert_se(u = s->userdata); */ /* if (u->master) { */ /* /\* If we have a master sink, we just return the latency of it */ /* * and add our own buffering on top *\/ */ /* if (!u->master->sink_input) */ /* return 0; */ /* return */ /* pa_sink_input_get_latency(u->master->sink_input) + */ /* pa_sink_get_latency(u->master->sink); */ /* } else { */ /* pa_usec_t usec = 0; */ /* /\* We have no master, hence let's ask our own thread which */ /* * implements the NULL sink *\/ */ /* if (pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0) */ /* return 0; */ /* return usec; */ /* } */ /* } */ static void update_description(struct userdata *u) { int first = 1; char *t; struct output *o; uint32_t idx; pa_assert(u); if (pa_idxset_isempty(u->outputs)) { pa_sink_set_description(u->sink, "Simultaneous output"); return; } t = pa_xstrdup("Simultaneous output to"); for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) { char *e; if (first) { e = pa_sprintf_malloc("%s %s", t, pa_strnull(pa_proplist_gets(o->sink->proplist, PA_PROP_DEVICE_DESCRIPTION))); first = 0; } else e = pa_sprintf_malloc("%s, %s", t, pa_strnull(pa_proplist_gets(o->sink->proplist, PA_PROP_DEVICE_DESCRIPTION))); pa_xfree(t); t = e; } pa_sink_set_description(u->sink, t); pa_xfree(t); } static void update_master(struct userdata *u, struct output *o) { pa_assert(u); if (u->master == o) return; if ((u->master = o)) pa_log_info("Master sink is now '%s'", o->sink_input->sink->name); else pa_log_info("No master selected, lacking suitable outputs."); } static void pick_master(struct userdata *u, struct output *except) { struct output *o; uint32_t idx; pa_assert(u); if (u->master && u->master != except && u->master->sink_input && PA_SINK_IS_OPENED(pa_sink_get_state(u->master->sink))) { update_master(u, u->master); return; } for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) if (o != except && o->sink_input && PA_SINK_IS_OPENED(pa_sink_get_state(o->sink))) { update_master(u, o); return; } update_master(u, NULL); } static int output_create_sink_input(struct output *o) { pa_sink_input_new_data data; char *t; pa_assert(o); if (o->sink_input) return 0; t = pa_sprintf_malloc("Simultaneous output on %s", pa_strnull(pa_proplist_gets(o->sink->proplist, PA_PROP_DEVICE_DESCRIPTION))); pa_sink_input_new_data_init(&data); data.sink = o->sink; data.driver = __FILE__; pa_proplist_sets(data.proplist, PA_PROP_DEVICE_DESCRIPTION, t); pa_sink_input_new_data_set_sample_spec(&data, &o->userdata->sink->sample_spec); pa_sink_input_new_data_set_channel_map(&data, &o->userdata->sink->channel_map); data.module = o->userdata->module; data.resample_method = o->userdata->resample_method; o->sink_input = pa_sink_input_new(o->userdata->core, &data, PA_SINK_INPUT_VARIABLE_RATE|PA_SINK_INPUT_DONT_MOVE); pa_sink_input_new_data_done(&data); pa_xfree(t); if (!o->sink_input) return -1; o->sink_input->parent.process_msg = sink_input_process_msg; o->sink_input->pop = sink_input_pop_cb; o->sink_input->attach = sink_input_attach_cb; o->sink_input->detach = sink_input_detach_cb; o->sink_input->kill = sink_input_kill_cb; o->sink_input->userdata = o; return 0; } static struct output *output_new(struct userdata *u, pa_sink *sink) { struct output *o; pa_assert(u); pa_assert(sink); pa_assert(u->sink); o = pa_xnew(struct output, 1); o->userdata = u; o->inq = pa_asyncmsgq_new(0); o->outq = pa_asyncmsgq_new(0); o->inq_rtpoll_item = NULL; o->outq_rtpoll_item = NULL; o->sink = sink; o->sink_input = NULL; o->memblockq = pa_memblockq_new( 0, MEMBLOCKQ_MAXLENGTH, MEMBLOCKQ_MAXLENGTH, pa_frame_size(&u->sink->sample_spec), 1, 0, 0, NULL); pa_assert_se(pa_idxset_put(u->outputs, o, NULL) == 0); if (u->sink && PA_SINK_IS_LINKED(pa_sink_get_state(u->sink))) pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_ADD_OUTPUT, o, 0, NULL); else { /* If the sink is not yet started, we need to do the activation ourselves */ PA_LLIST_PREPEND(struct output, u->thread_info.active_outputs, o); o->outq_rtpoll_item = pa_rtpoll_item_new_asyncmsgq_read( u->rtpoll, PA_RTPOLL_EARLY-1, /* This item is very important */ o->outq); } if (PA_SINK_IS_OPENED(pa_sink_get_state(u->sink)) || pa_sink_get_state(u->sink) == PA_SINK_INIT) { pa_sink_suspend(sink, FALSE); if (PA_SINK_IS_OPENED(pa_sink_get_state(sink))) if (output_create_sink_input(o) < 0) goto fail; } update_description(u); return o; fail: if (o) { pa_idxset_remove_by_data(u->outputs, o, NULL); if (o->sink_input) { pa_sink_input_unlink(o->sink_input); pa_sink_input_unref(o->sink_input); } if (o->memblockq) pa_memblockq_free(o->memblockq); if (o->inq) pa_asyncmsgq_unref(o->inq); if (o->outq) pa_asyncmsgq_unref(o->outq); pa_xfree(o); } return NULL; } static pa_hook_result_t sink_new_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) { struct output *o; pa_core_assert_ref(c); pa_sink_assert_ref(s); pa_assert(u); pa_assert(u->automatic); if (!(s->flags & PA_SINK_HARDWARE) || s == u->sink) return PA_HOOK_OK; pa_log_info("Configuring new sink: %s", s->name); if (!(o = output_new(u, s))) { pa_log("Failed to create sink input on sink '%s'.", s->name); return PA_HOOK_OK; } if (o->sink_input) pa_sink_input_put(o->sink_input); pick_master(u, NULL); return PA_HOOK_OK; } static pa_hook_result_t sink_unlink_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) { struct output *o; uint32_t idx; pa_assert(c); pa_sink_assert_ref(s); pa_assert(u); if (s == u->sink) return PA_HOOK_OK; for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) if (o->sink == s) break; if (!o) return PA_HOOK_OK; pa_log_info("Unconfiguring sink: %s", s->name); output_free(o); return PA_HOOK_OK; } static pa_hook_result_t sink_state_changed_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) { struct output *o; uint32_t idx; pa_sink_state_t state; if (s == u->sink) return PA_HOOK_OK; for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) if (o->sink == s) break; if (!o) return PA_HOOK_OK; state = pa_sink_get_state(s); if (PA_SINK_IS_OPENED(state) && PA_SINK_IS_OPENED(pa_sink_get_state(u->sink)) && !o->sink_input) { enable_output(o); pick_master(u, NULL); } if (state == PA_SINK_SUSPENDED && o->sink_input) { disable_output(o); pick_master(u, o); } return PA_HOOK_OK; } int pa__init(pa_module*m) { struct userdata *u; pa_modargs *ma = NULL; const char *master_name, *slaves, *rm; pa_sink *master_sink = NULL; int resample_method = PA_RESAMPLER_TRIVIAL; pa_sample_spec ss; pa_channel_map map; struct output *o; uint32_t idx; pa_sink_new_data data; pa_assert(m); if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log("failed to parse module arguments"); goto fail; } if ((rm = pa_modargs_get_value(ma, "resample_method", NULL))) { if ((resample_method = pa_parse_resample_method(rm)) < 0) { pa_log("invalid resample method '%s'", rm); goto fail; } } u = pa_xnew(struct userdata, 1); u->core = m->core; u->module = m; m->userdata = u; u->sink = NULL; u->master = NULL; u->time_event = NULL; u->adjust_time = DEFAULT_ADJUST_TIME; u->rtpoll = pa_rtpoll_new(); pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll); u->thread = NULL; u->resample_method = resample_method; u->outputs = pa_idxset_new(NULL, NULL); memset(&u->adjust_timestamp, 0, sizeof(u->adjust_timestamp)); u->sink_new_slot = u->sink_unlink_slot = u->sink_state_changed_slot = NULL; PA_LLIST_HEAD_INIT(struct output, u->thread_info.active_outputs); pa_atomic_store(&u->thread_info.running, FALSE); u->thread_info.in_null_mode = FALSE; if (pa_modargs_get_value_u32(ma, "adjust_time", &u->adjust_time) < 0) { pa_log("Failed to parse adjust_time value"); goto fail; } master_name = pa_modargs_get_value(ma, "master", NULL); slaves = pa_modargs_get_value(ma, "slaves", NULL); if (!master_name != !slaves) { pa_log("No master or slave sinks specified"); goto fail; } if (master_name) { if (!(master_sink = pa_namereg_get(m->core, master_name, PA_NAMEREG_SINK, 1))) { pa_log("Invalid master sink '%s'", master_name); goto fail; } ss = master_sink->sample_spec; u->automatic = FALSE; } else { master_sink = NULL; ss = m->core->default_sample_spec; u->automatic = TRUE; } if ((pa_modargs_get_sample_spec(ma, &ss) < 0)) { pa_log("Invalid sample specification."); goto fail; } if (master_sink && ss.channels == master_sink->sample_spec.channels) map = master_sink->channel_map; else { pa_assert_se(pa_channel_map_init_auto(&map, ss.channels, PA_CHANNEL_MAP_AUX)); pa_channel_map_init_auto(&map, ss.channels, PA_CHANNEL_MAP_DEFAULT); } if ((pa_modargs_get_channel_map(ma, NULL, &map) < 0)) { pa_log("Invalid channel map."); goto fail; } if (ss.channels != map.channels) { pa_log("Channel map and sample specification don't match."); goto fail; } pa_sink_new_data_init(&data); data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", DEFAULT_SINK_NAME)); data.namereg_fail = FALSE; data.driver = __FILE__; data.module = m; pa_sink_new_data_set_sample_spec(&data, &ss); pa_sink_new_data_set_channel_map(&data, &map); pa_proplist_sets(data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Simultaneous Output"); u->sink = pa_sink_new(m->core, &data, PA_SINK_LATENCY); pa_sink_new_data_done(&data); if (!u->sink) { pa_log("Failed to create sink"); goto fail; } u->sink->parent.process_msg = sink_process_msg; /* u->sink->get_latency = sink_get_latency_cb; */ u->sink->set_state = sink_set_state; u->sink->userdata = u; pa_sink_set_rtpoll(u->sink, u->rtpoll); pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq); u->block_size = pa_bytes_per_second(&ss) / 20; /* 50 ms */ if (u->block_size <= 0) u->block_size = pa_frame_size(&ss); if (!u->automatic) { const char*split_state; char *n = NULL; pa_assert(slaves); /* The master and slaves have been specified manually */ if (!(u->master = output_new(u, master_sink))) { pa_log("Failed to create master sink input on sink '%s'.", master_sink->name); goto fail; } split_state = NULL; while ((n = pa_split(slaves, ",", &split_state))) { pa_sink *slave_sink; if (!(slave_sink = pa_namereg_get(m->core, n, PA_NAMEREG_SINK, 1)) || slave_sink == u->sink) { pa_log("Invalid slave sink '%s'", n); pa_xfree(n); goto fail; } pa_xfree(n); if (!output_new(u, slave_sink)) { pa_log("Failed to create slave sink input on sink '%s'.", slave_sink->name); goto fail; } } if (pa_idxset_size(u->outputs) <= 1) pa_log_warn("No slave sinks specified."); u->sink_new_slot = NULL; } else { pa_sink *s; /* We're in automatic mode, we elect one hw sink to the master * and attach all other hw sinks as slaves to it */ for (s = pa_idxset_first(m->core->sinks, &idx); s; s = pa_idxset_next(m->core->sinks, &idx)) { if (!(s->flags & PA_SINK_HARDWARE) || s == u->sink) continue; if (!output_new(u, s)) { pa_log("Failed to create sink input on sink '%s'.", s->name); goto fail; } } u->sink_new_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_PUT], PA_HOOK_LATE, (pa_hook_cb_t) sink_new_hook_cb, u); } u->sink_unlink_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_UNLINK], PA_HOOK_EARLY, (pa_hook_cb_t) sink_unlink_hook_cb, u); u->sink_state_changed_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_STATE_CHANGED], PA_HOOK_NORMAL, (pa_hook_cb_t) sink_state_changed_hook_cb, u); pick_master(u, NULL); if (!(u->thread = pa_thread_new(thread_func, u))) { pa_log("Failed to create thread."); goto fail; } /* Activate the sink and the sink inputs */ pa_sink_put(u->sink); for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) if (o->sink_input) pa_sink_input_put(o->sink_input); if (u->adjust_time > 0) { struct timeval tv; pa_gettimeofday(&tv); tv.tv_sec += u->adjust_time; u->time_event = m->core->mainloop->time_new(m->core->mainloop, &tv, time_callback, u); } pa_modargs_free(ma); return 0; fail: if (ma) pa_modargs_free(ma); pa__done(m); return -1; } static void output_free(struct output *o) { pa_assert(o); pick_master(o->userdata, o); disable_output(o); pa_assert_se(pa_idxset_remove_by_data(o->userdata->outputs, o, NULL)); update_description(o->userdata); if (o->inq_rtpoll_item) pa_rtpoll_item_free(o->inq_rtpoll_item); if (o->outq_rtpoll_item) pa_rtpoll_item_free(o->outq_rtpoll_item); if (o->inq) pa_asyncmsgq_unref(o->inq); if (o->outq) pa_asyncmsgq_unref(o->outq); if (o->memblockq) pa_memblockq_free(o->memblockq); pa_xfree(o); } void pa__done(pa_module*m) { struct userdata *u; struct output *o; pa_assert(m); if (!(u = m->userdata)) return; if (u->sink_new_slot) pa_hook_slot_free(u->sink_new_slot); if (u->sink_unlink_slot) pa_hook_slot_free(u->sink_unlink_slot); if (u->sink_state_changed_slot) pa_hook_slot_free(u->sink_state_changed_slot); if (u->outputs) { while ((o = pa_idxset_first(u->outputs, NULL))) output_free(o); pa_idxset_free(u->outputs, NULL, NULL); } if (u->sink) pa_sink_unlink(u->sink); if (u->thread) { pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL); pa_thread_free(u->thread); } pa_thread_mq_done(&u->thread_mq); if (u->sink) pa_sink_unref(u->sink); if (u->rtpoll) pa_rtpoll_free(u->rtpoll); if (u->time_event) u->core->mainloop->time_free(u->time_event); pa_xfree(u); }