/* $Id$ */ /*** This file is part of PulseAudio. Copyright 2004-2006 Lennart Poettering PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "module-combine-symdef.h" PA_MODULE_AUTHOR("Lennart Poettering") PA_MODULE_DESCRIPTION("Combine multiple sinks to one") PA_MODULE_VERSION(PACKAGE_VERSION) PA_MODULE_USAGE( "sink_name= " "master= " "slaves= " "adjust_time= " "resample_method= " "format= " "channels= " "rate= " "channel_map=") #define DEFAULT_SINK_NAME "combined" #define MEMBLOCKQ_MAXLENGTH (1024*170) #define DEFAULT_ADJUST_TIME 10 static const char* const valid_modargs[] = { "sink_name", "master", "slaves", "adjust_time", "resample_method", "format", "channels", "rate", "channel_map", NULL }; struct output { struct userdata *userdata; pa_sink *sink; pa_sink_input *sink_input; pa_asyncmsgq *asyncmsgq; pa_rtpoll_item *rtpoll_item; pa_memblockq *memblockq; pa_usec_t total_latency; PA_LLIST_FIELDS(struct output); }; struct userdata { pa_core *core; pa_module *module; pa_sink *sink; pa_thread *thread; pa_thread_mq thread_mq; pa_rtpoll *rtpoll; pa_mutex *mutex; struct output *master; pa_time_event *time_event; uint32_t adjust_time; int automatic; size_t block_size; struct timespec timestamp; pa_hook_slot *sink_new_slot, *sink_unlink_slot, *sink_state_changed_slot; pa_resample_method_t resample_method; struct timespec adjust_timestamp; pa_idxset* outputs; /* managed in main context */ struct { PA_LLIST_HEAD(struct output, outputs); /* managed in IO thread context */ struct output *master; } thread_info; }; enum { SINK_MESSAGE_DETACH = PA_SINK_MESSAGE_MAX, SINK_MESSAGE_ATTACH, SINK_MESSAGE_ADD_OUTPUT, SINK_MESSAGE_REMOVE_OUTPUT }; static void output_free(struct output *o); static int output_create_sink_input(struct userdata *u, struct output *o); static int update_master(struct userdata *u, struct output *o); static int pick_master(struct userdata *u); static void adjust_rates(struct userdata *u) { struct output *o; pa_usec_t max_sink_latency = 0, min_total_latency = (pa_usec_t) -1, target_latency; uint32_t base_rate; uint32_t idx; pa_assert(u); pa_sink_assert_ref(u->sink); if (pa_idxset_size(u->outputs) <= 0) return; if (!PA_SINK_OPENED(pa_sink_get_state(u->sink))) return; for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) { uint32_t sink_latency; if (!o->sink_input || !PA_SINK_OPENED(pa_sink_get_state(o->sink))) continue; sink_latency = o->sink_input->sink ? pa_sink_get_latency(o->sink_input->sink) : 0; o->total_latency = sink_latency + pa_sink_input_get_latency(o->sink_input); if (sink_latency > max_sink_latency) max_sink_latency = sink_latency; if (o->total_latency < min_total_latency) min_total_latency = o->total_latency; } if (min_total_latency == (pa_usec_t) -1) return; target_latency = max_sink_latency > min_total_latency ? max_sink_latency : min_total_latency; pa_log_info("[%s] target latency is %0.0f usec.", u->sink->name, (float) target_latency); pa_log_info("[%s] master is %s", u->sink->name, u->master->sink->description); base_rate = u->sink->sample_spec.rate; for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) { uint32_t r = base_rate; if (!o->sink_input || !PA_SINK_OPENED(pa_sink_get_state(o->sink))) continue; if (o->total_latency < target_latency) r -= (uint32_t) (((((double) target_latency - o->total_latency))/u->adjust_time)*r/ 1000000); else if (o->total_latency > target_latency) r += (uint32_t) (((((double) o->total_latency - target_latency))/u->adjust_time)*r/ 1000000); if (r < (uint32_t) (base_rate*0.9) || r > (uint32_t) (base_rate*1.1)) { pa_log_warn("[%s] sample rates too different, not adjusting (%u vs. %u).", o->sink_input->name, base_rate, r); pa_sink_input_set_rate(o->sink_input, base_rate); } else { pa_log_info("[%s] new rate is %u Hz; ratio is %0.3f; latency is %0.0f usec.", o->sink_input->name, r, (double) r / base_rate, (float) o->total_latency); pa_sink_input_set_rate(o->sink_input, r); } } } static void time_callback(pa_mainloop_api*a, pa_time_event* e, const struct timeval *tv, void *userdata) { struct userdata *u = userdata; struct timeval n; pa_assert(u); pa_assert(a); pa_assert(u->time_event == e); adjust_rates(u); pa_gettimeofday(&n); n.tv_sec += u->adjust_time; u->sink->core->mainloop->time_restart(e, &n); } static void thread_func(void *userdata) { struct userdata *u = userdata; pa_assert(u); pa_log_debug("Thread starting up"); pa_thread_mq_install(&u->thread_mq); pa_rtpoll_install(u->rtpoll); pa_rtclock_get(&u->timestamp); /* This is only run when we are in NULL mode, to make sure that * playback doesn't stop. In all other cases we hook our stuff * into the master sink. */ for (;;) { int ret; /* Render some data and drop it immediately */ if (u->sink->thread_info.state == PA_SINK_RUNNING) { struct timespec now; pa_rtclock_get(&now); if (pa_timespec_cmp(&u->timestamp, &now) <= 0) { pa_sink_skip(u->sink, u->block_size); pa_timespec_add(&u->timestamp, pa_bytes_to_usec(u->block_size, &u->sink->sample_spec)); } pa_rtpoll_set_timer_absolute(u->rtpoll, &u->timestamp); } else pa_rtpoll_set_timer_disabled(u->rtpoll); /* Now give the sink inputs some to time to process their data */ if ((ret = pa_sink_process_inputs(u->sink)) < 0) goto fail; if (ret > 0) continue; /* Check whether there is a message for us to process */ if ((ret = pa_thread_mq_process(&u->thread_mq) < 0)) goto finish; if (ret > 0) continue; /* Hmm, nothing to do. Let's sleep */ if (pa_rtpoll_run(u->rtpoll, 1) < 0) { pa_log("poll() failed: %s", pa_cstrerror(errno)); goto fail; } } fail: /* We have to continue processing messages until we receive the * SHUTDOWN message */ pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL); pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN); finish: pa_log_debug("Thread shutting down"); } static void request_memblock(struct output *o) { pa_memchunk chunk; pa_assert(o); pa_sink_input_assert_ref(o->sink_input); pa_sink_assert_ref(o->userdata->sink); /* If another thread already prepared some data we received * the data over the asyncmsgq, hence let's first process * it. */ while (pa_asyncmsgq_get(o->asyncmsgq, NULL, NULL, NULL, NULL, &chunk, 0) == 0) { pa_memblockq_push_align(o->memblockq, &chunk); pa_asyncmsgq_done(o->asyncmsgq, 0); } /* Check whether we're now readable */ if (pa_memblockq_is_readable(o->memblockq)) return; /* OK, we need to prepare new data */ pa_mutex_lock(o->userdata->mutex); if (PA_SINK_OPENED(o->userdata->sink->thread_info.state)) { /* Maybe there's some data now? */ while (pa_asyncmsgq_get(o->asyncmsgq, NULL, NULL, NULL, NULL, &chunk, 0) == 0) { pa_memblockq_push_align(o->memblockq, &chunk); pa_asyncmsgq_done(o->asyncmsgq, 0); } /* Ok, now let's prepare some data if we really have to */ while (!pa_memblockq_is_readable(o->memblockq)) { struct output *j; /* Do it! */ pa_sink_render(o->userdata->sink, o->userdata->block_size, &chunk); /* OK, let's send this data to the other threads */ for (j = o->userdata->thread_info.outputs; j; j = j->next) if (j != o && j->sink_input) pa_asyncmsgq_post(j->asyncmsgq, NULL, 0, NULL, 0, &chunk, NULL); /* And push it into our own queue */ pa_memblockq_push_align(o->memblockq, &chunk); pa_memblock_unref(chunk.memblock); } } pa_mutex_unlock(o->userdata->mutex); } /* Called from I/O trhead context */ static int sink_input_peek_cb(pa_sink_input *i, pa_memchunk *chunk) { struct output *o; pa_sink_input_assert_ref(i); o = i->userdata; pa_assert(o); /* If necessary, get some new data */ request_memblock(o); return pa_memblockq_peek(o->memblockq, chunk); } /* Called from I/O thread context */ static void sink_input_drop_cb(pa_sink_input *i, size_t length) { struct output *o; pa_sink_input_assert_ref(i); pa_assert(length > 0); o = i->userdata; pa_assert(o); pa_memblockq_drop(o->memblockq, length); } /* Called from I/O thread context */ static int sink_input_process_cb(pa_sink_input *i) { struct output *o; pa_memchunk chunk; int r = 0; pa_sink_input_assert_ref(i); o = i->userdata; pa_assert(o); /* Move all data in the asyncmsgq into our memblockq */ while (pa_asyncmsgq_get(o->asyncmsgq, NULL, NULL, NULL, NULL, &chunk, 0) == 0) { if (PA_SINK_OPENED(i->sink->thread_info.state)) pa_memblockq_push_align(o->memblockq, &chunk); pa_asyncmsgq_done(o->asyncmsgq, 0); } /* If the sink is suspended, flush our queue */ if (!PA_SINK_OPENED(i->sink->thread_info.state)) pa_memblockq_flush(o->memblockq); if (o == o->userdata->thread_info.master) { pa_mutex_lock(o->userdata->mutex); r = pa_sink_process_inputs(o->userdata->sink); pa_mutex_unlock(o->userdata->mutex); } return r; } /* Called from I/O thread context */ static void sink_input_attach_cb(pa_sink_input *i) { struct output *o; pa_sink_input_assert_ref(i); o = i->userdata; pa_assert(o); pa_assert(!o->rtpoll_item); o->rtpoll_item = pa_rtpoll_item_new_asyncmsgq(i->sink->rtpoll, PA_RTPOLL_NORMAL, o->asyncmsgq); } /* Called from I/O thread context */ static void sink_input_detach_cb(pa_sink_input *i) { struct output *o; pa_sink_input_assert_ref(i); o = i->userdata; pa_assert(o); pa_assert(o->rtpoll_item); pa_rtpoll_item_free(o->rtpoll_item); o->rtpoll_item = NULL; } /* Called from main context */ static void sink_input_kill_cb(pa_sink_input *i) { struct output *o; pa_sink_input_assert_ref(i); o = i->userdata; pa_assert(o); pa_sink_input_unlink(o->sink_input); pa_sink_input_unref(o->sink_input); o->sink_input = NULL; pa_module_unload_request(o->userdata->module); } /* Called from thread context */ static int sink_input_process_msg(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct output *o = PA_SINK_INPUT(obj)->userdata; switch (code) { case PA_SINK_INPUT_MESSAGE_GET_LATENCY: { pa_usec_t *r = data; *r = pa_bytes_to_usec(pa_memblockq_get_length(o->memblockq), &o->sink_input->sample_spec); /* Fall through, the default handler will add in the extra * latency added by the resampler */ break; } } return pa_sink_input_process_msg(obj, code, data, offset, chunk); } static int suspend(struct userdata *u) { struct output *o; uint32_t idx; pa_assert(u); /* Let's suspend by unlinking all streams */ for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) { if (o->sink_input) { pa_sink_input_unlink(o->sink_input); pa_sink_input_unref(o->sink_input); o->sink_input = NULL; } } if (pick_master(u) < 0) pa_module_unload_request(u->module); pa_log_info("Device suspended..."); return 0; } static int unsuspend(struct userdata *u) { struct output *o; uint32_t idx; pa_assert(u); /* Let's resume */ for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) { pa_sink_suspend(o->sink, 0); if (PA_SINK_OPENED(pa_sink_get_state(o->sink))) { if (output_create_sink_input(u, o) < 0) output_free(o); else pa_sink_input_put(o->sink_input); } } if (pick_master(u) < 0) pa_module_unload_request(u->module); pa_log_info("Resumed successfully..."); return 0; } static int sink_set_state(pa_sink *sink, pa_sink_state_t state) { struct userdata *u; pa_sink_assert_ref(sink); u = sink->userdata; pa_assert(u); /* Please note that in contrast to the ALSA modules we call * suspend/unsuspend from main context here! */ switch (state) { case PA_SINK_SUSPENDED: pa_assert(PA_SINK_OPENED(pa_sink_get_state(u->sink))); if (suspend(u) < 0) return -1; break; case PA_SINK_IDLE: case PA_SINK_RUNNING: if (pa_sink_get_state(u->sink) == PA_SINK_SUSPENDED) { if (unsuspend(u) < 0) return -1; } break; case PA_SINK_UNLINKED: case PA_SINK_INIT: ; } return 0; } /* Called from thread context of the master */ static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SINK(o)->userdata; switch (code) { case PA_SINK_MESSAGE_SET_STATE: if ((pa_sink_state_t) PA_PTR_TO_UINT(data) == PA_SINK_RUNNING) { /* Only useful when running in NULL mode, i.e. when no * master sink is attached */ pa_rtclock_get(&u->timestamp); } break; case PA_SINK_MESSAGE_GET_LATENCY: { struct timespec now; /* This code will only be called when running in NULL * mode, i.e. when no master sink is attached. See * sink_get_latency_cb() below */ pa_rtclock_get(&now); if (pa_timespec_cmp(&u->timestamp, &now) > 0) *((pa_usec_t*) data) = 0; else *((pa_usec_t*) data) = pa_timespec_diff(&u->timestamp, &now); break; } case SINK_MESSAGE_DETACH: { pa_sink_input *i; void *state = NULL; /* We're detaching all our input streams artificially, so * that we can driver our sink from a different sink */ while ((i = pa_hashmap_iterate(u->sink->thread_info.inputs, &state, NULL))) if (i->detach) i->detach(i); u->thread_info.master = NULL; break; } case SINK_MESSAGE_ATTACH: { pa_sink_input *i; void *state = NULL; /* We're attached all our input streams artificially again */ while ((i = pa_hashmap_iterate(u->sink->thread_info.inputs, &state, NULL))) if (i->attach) i->attach(i); u->thread_info.master = data; break; } case SINK_MESSAGE_ADD_OUTPUT: PA_LLIST_PREPEND(struct output, u->thread_info.outputs, (struct output*) data); break; case SINK_MESSAGE_REMOVE_OUTPUT: PA_LLIST_REMOVE(struct output, u->thread_info.outputs, (struct output*) data); break; } return pa_sink_process_msg(o, code, data, offset, chunk); } /* Called from main context */ static pa_usec_t sink_get_latency_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); u = s->userdata; pa_assert(u); if (u->master) { /* If we have a master sink, we just return the latency of it * and add our own buffering on top */ if (!u->master->sink_input) return 0; return pa_sink_input_get_latency(u->master->sink_input) + pa_sink_get_latency(u->master->sink_input->sink); } else { pa_usec_t usec; /* We have no master, hence let's ask our own thread which * implements the NULL sink */ if (pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0) return 0; return usec; } } static void update_description(struct userdata *u) { int first = 1; char *t; struct output *o; uint32_t idx; pa_assert(u); if (pa_idxset_isempty(u->outputs)) { pa_sink_set_description(u->sink, "Simultaneous output"); return; } t = pa_xstrdup("Simultaneous output to"); for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) { char *e; if (first) { e = pa_sprintf_malloc("%s %s", t, o->sink->description); first = 0; } else e = pa_sprintf_malloc("%s, %s", t, o->sink->description); pa_xfree(t); t = e; } pa_sink_set_description(u->sink, t); pa_xfree(t); } static int update_master(struct userdata *u, struct output *o) { pa_assert(u); /* Make sure everything is detached from the old thread before we move our stuff to a new thread */ if (u->sink && PA_SINK_LINKED(pa_sink_get_state(u->sink))) pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_DETACH, NULL, 0, NULL); if (o) { /* If we have a master sink we run our own sink in its thread */ pa_assert(o->sink_input); pa_assert(PA_SINK_OPENED(pa_sink_get_state(o->sink))); if (u->thread) { /* If we previously were in NULL mode, let's kill the thread */ pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL); pa_thread_free(u->thread); u->thread = NULL; pa_assert(u->rtpoll); pa_rtpoll_free(u->rtpoll); u->rtpoll = NULL; } pa_sink_set_asyncmsgq(u->sink, o->sink->asyncmsgq); pa_sink_set_rtpoll(u->sink, o->sink->rtpoll); u->master = o; pa_log_info("Master sink is now '%s'", o->sink_input->sink->name); } else { /* We have no master sink, let's create our own thread */ pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq); u->master = NULL; if (!u->thread) { pa_assert(!u->rtpoll); u->rtpoll = pa_rtpoll_new(); pa_rtpoll_item_new_asyncmsgq(u->rtpoll, PA_RTPOLL_EARLY, u->thread_mq.inq); pa_sink_set_rtpoll(u->sink, u->rtpoll); if (!(u->thread = pa_thread_new(thread_func, u))) { pa_log("Failed to create thread."); return -1; } } pa_log_info("No suitable master sink found, going to NULL mode\n"); } /* Now attach everything again */ if (u->sink && PA_SINK_LINKED(pa_sink_get_state(u->sink))) pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_ATTACH, u->master, 0, NULL); return 0; } static int pick_master(struct userdata *u) { struct output *o; uint32_t idx; pa_assert(u); if (u->master && u->master->sink_input && PA_SINK_OPENED(pa_sink_get_state(u->master->sink))) return update_master(u, u->master); for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) if (o->sink_input && PA_SINK_OPENED(pa_sink_get_state(o->sink))) return update_master(u, o); return update_master(u, NULL); } static int output_create_sink_input(struct userdata *u, struct output *o) { pa_sink_input_new_data data; char *t; pa_assert(u); pa_assert(!o->sink_input); t = pa_sprintf_malloc("Simultaneous output on %s", o->sink->description); pa_sink_input_new_data_init(&data); data.sink = o->sink; data.driver = __FILE__; data.name = t; pa_sink_input_new_data_set_sample_spec(&data, &u->sink->sample_spec); pa_sink_input_new_data_set_channel_map(&data, &u->sink->channel_map); data.module = u->module; data.resample_method = u->resample_method; o->sink_input = pa_sink_input_new(u->core, &data, PA_SINK_INPUT_VARIABLE_RATE|PA_SINK_INPUT_DONT_MOVE); pa_xfree(t); if (!o->sink_input) return -1; o->sink_input->parent.process_msg = sink_input_process_msg; o->sink_input->peek = sink_input_peek_cb; o->sink_input->drop = sink_input_drop_cb; o->sink_input->process = sink_input_process_cb; o->sink_input->attach = sink_input_attach_cb; o->sink_input->detach = sink_input_detach_cb; o->sink_input->kill = sink_input_kill_cb; o->sink_input->userdata = o; return 0; } static struct output *output_new(struct userdata *u, pa_sink *sink) { struct output *o; pa_assert(u); pa_assert(sink); pa_assert(u->sink); o = pa_xnew(struct output, 1); o->userdata = u; o->asyncmsgq = pa_asyncmsgq_new(0); o->rtpoll_item = NULL; o->sink = sink; o->sink_input = NULL; o->memblockq = pa_memblockq_new( 0, MEMBLOCKQ_MAXLENGTH, MEMBLOCKQ_MAXLENGTH, pa_frame_size(&u->sink->sample_spec), 1, 0, NULL); pa_assert_se(pa_idxset_put(u->outputs, o, NULL) == 0); update_description(u); if (u->sink && PA_SINK_LINKED(pa_sink_get_state(u->sink))) pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_ADD_OUTPUT, o, 0, NULL); else PA_LLIST_PREPEND(struct output, u->thread_info.outputs, o); if (PA_SINK_OPENED(pa_sink_get_state(u->sink)) || pa_sink_get_state(u->sink) == PA_SINK_INIT) { pa_sink_suspend(sink, 0); if (PA_SINK_OPENED(pa_sink_get_state(sink))) if (output_create_sink_input(u, o) < 0) goto fail; } return o; fail: if (o) { if (o->sink_input) { pa_sink_input_unlink(o->sink_input); pa_sink_input_unref(o->sink_input); } if (o->memblockq) pa_memblockq_free(o->memblockq); if (o->asyncmsgq) pa_asyncmsgq_unref(o->asyncmsgq); pa_xfree(o); } return NULL; } static pa_hook_result_t sink_new_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) { struct output *o; pa_core_assert_ref(c); pa_sink_assert_ref(s); pa_assert(u); pa_assert(u->automatic); if (!(s->flags & PA_SINK_HARDWARE) || s == u->sink) return PA_HOOK_OK; pa_log_info("Configuring new sink: %s", s->name); if (!(o = output_new(u, s))) { pa_log("Failed to create sink input on sink '%s'.", s->name); return PA_HOOK_OK; } if (pick_master(u) < 0) pa_module_unload_request(u->module); if (o->sink_input) pa_sink_input_put(o->sink_input); return PA_HOOK_OK; } static pa_hook_result_t sink_unlink_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) { struct output *o; uint32_t idx; pa_assert(c); pa_sink_assert_ref(s); pa_assert(u); if (s == u->sink) return PA_HOOK_OK; for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) if (o->sink == s) break; if (!o) return PA_HOOK_OK; pa_log_info("Unconfiguring sink: %s", s->name); output_free(o); if (pick_master(u) < 0) pa_module_unload_request(u->module); return PA_HOOK_OK; } static pa_hook_result_t sink_state_changed_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) { struct output *o; uint32_t idx; pa_sink_state_t state; if (s == u->sink) return PA_HOOK_OK; for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) if (o->sink == s) break; if (!o) return PA_HOOK_OK; state = pa_sink_get_state(s); if (PA_SINK_OPENED(state) && PA_SINK_OPENED(pa_sink_get_state(u->sink)) && !o->sink_input) { output_create_sink_input(u, o); if (pick_master(u) < 0) pa_module_unload_request(u->module); if (o->sink_input) pa_sink_input_put(o->sink_input); } if (state == PA_SINK_SUSPENDED && o->sink_input) { pa_sink_input_unlink(o->sink_input); pa_sink_input_unref(o->sink_input); o->sink_input = NULL; pa_memblockq_flush(o->memblockq); if (pick_master(u) < 0) pa_module_unload_request(u->module); } return PA_HOOK_OK; } int pa__init(pa_module*m) { struct userdata *u; pa_modargs *ma = NULL; const char *master_name, *slaves, *rm; pa_sink *master_sink = NULL; int resample_method = PA_RESAMPLER_TRIVIAL; pa_sample_spec ss; pa_channel_map map; struct output *o; uint32_t idx; pa_assert(m); if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log("failed to parse module arguments"); goto fail; } if ((rm = pa_modargs_get_value(ma, "resample_method", NULL))) { if ((resample_method = pa_parse_resample_method(rm)) < 0) { pa_log("invalid resample method '%s'", rm); goto fail; } } u = pa_xnew(struct userdata, 1); u->core = m->core; u->module = m; m->userdata = u; u->sink = NULL; u->thread_info.master = u->master = NULL; u->time_event = NULL; u->adjust_time = DEFAULT_ADJUST_TIME; u->mutex = pa_mutex_new(0); pa_thread_mq_init(&u->thread_mq, m->core->mainloop); u->rtpoll = NULL; u->thread = NULL; PA_LLIST_HEAD_INIT(struct output, u->thread_info.outputs); u->resample_method = resample_method; u->outputs = pa_idxset_new(NULL, NULL); pa_timespec_reset(&u->adjust_timestamp); if (pa_modargs_get_value_u32(ma, "adjust_time", &u->adjust_time) < 0) { pa_log("Failed to parse adjust_time value"); goto fail; } master_name = pa_modargs_get_value(ma, "master", NULL); slaves = pa_modargs_get_value(ma, "slaves", NULL); if (!master_name != !slaves) { pa_log("No master or slave sinks specified"); goto fail; } if (master_name) { if (!(master_sink = pa_namereg_get(m->core, master_name, PA_NAMEREG_SINK, 1))) { pa_log("Invalid master sink '%s'", master_name); goto fail; } ss = master_sink->sample_spec; u->automatic = 0; } else { master_sink = NULL; ss = m->core->default_sample_spec; u->automatic = 1; } if ((pa_modargs_get_sample_spec(ma, &ss) < 0)) { pa_log("Invalid sample specification."); goto fail; } if (master_sink && ss.channels == master_sink->sample_spec.channels) map = master_sink->channel_map; else pa_channel_map_init_auto(&map, ss.channels, PA_CHANNEL_MAP_DEFAULT); if ((pa_modargs_get_channel_map(ma, NULL, &map) < 0)) { pa_log("Invalid channel map."); goto fail; } if (ss.channels != map.channels) { pa_log("Channel map and sample specification don't match."); goto fail; } if (!(u->sink = pa_sink_new(m->core, __FILE__, pa_modargs_get_value(ma, "sink_name", DEFAULT_SINK_NAME), 0, &ss, &map))) { pa_log("Failed to create sink"); goto fail; } u->sink->parent.process_msg = sink_process_msg; u->sink->get_latency = sink_get_latency_cb; u->sink->set_state = sink_set_state; u->sink->userdata = u; u->sink->flags = PA_SINK_CAN_SUSPEND|PA_SINK_LATENCY; pa_sink_set_module(u->sink, m); pa_sink_set_description(u->sink, "Simultaneous output"); u->block_size = pa_bytes_per_second(&ss) / 20; /* 50 ms */ if (u->block_size <= 0) u->block_size = pa_frame_size(&ss); if (!u->automatic) { const char*split_state; char *n = NULL; pa_assert(slaves); /* The master and slaves have been specified manually */ if (!(u->master = output_new(u, master_sink))) { pa_log("Failed to create master sink input on sink '%s'.", master_sink->name); goto fail; } split_state = NULL; while ((n = pa_split(slaves, ",", &split_state))) { pa_sink *slave_sink; if (!(slave_sink = pa_namereg_get(m->core, n, PA_NAMEREG_SINK, 1)) || slave_sink == u->sink) { pa_log("Invalid slave sink '%s'", n); pa_xfree(n); goto fail; } pa_xfree(n); if (!output_new(u, slave_sink)) { pa_log("Failed to create slave sink input on sink '%s'.", slave_sink->name); goto fail; } } if (pa_idxset_size(u->outputs) <= 1) pa_log_warn("WARNING: No slave sinks specified."); u->sink_new_slot = NULL; } else { pa_sink *s; /* We're in automatic mode, we elect one hw sink to the master * and attach all other hw sinks as slaves to it */ for (s = pa_idxset_first(m->core->sinks, &idx); s; s = pa_idxset_next(m->core->sinks, &idx)) { if (!(s->flags & PA_SINK_HARDWARE) || s == u->sink) continue; if (!output_new(u, s)) { pa_log("Failed to create sink input on sink '%s'.", s->name); goto fail; } } u->sink_new_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_NEW_POST], (pa_hook_cb_t) sink_new_hook_cb, u); } u->sink_unlink_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_UNLINK], (pa_hook_cb_t) sink_unlink_hook_cb, u); u->sink_state_changed_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_STATE_CHANGED], (pa_hook_cb_t) sink_state_changed_hook_cb, u); if (pick_master(u) < 0) goto fail; /* Activate the sink and the sink inputs */ pa_sink_put(u->sink); for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) if (o->sink_input) pa_sink_input_put(o->sink_input); if (u->adjust_time > 0) { struct timeval tv; pa_gettimeofday(&tv); tv.tv_sec += u->adjust_time; u->time_event = m->core->mainloop->time_new(m->core->mainloop, &tv, time_callback, u); } pa_modargs_free(ma); return 0; fail: if (ma) pa_modargs_free(ma); pa__done(m); return -1; } static void output_free(struct output *o) { pa_assert(o); if (o->userdata) { if (o->userdata->sink && PA_SINK_LINKED(pa_sink_get_state(o->userdata->sink))) pa_asyncmsgq_send(o->userdata->sink->asyncmsgq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_REMOVE_OUTPUT, o, 0, NULL); else PA_LLIST_REMOVE(struct output, o->userdata->thread_info.outputs, o); } pa_assert_se(pa_idxset_remove_by_data(o->userdata->outputs, o, NULL)); if (o->userdata->master == o) { /* Make sure the master points to a different output */ o->userdata->master = NULL; pick_master(o->userdata); } update_description(o->userdata); if (o->sink_input) { pa_sink_input_unlink(o->sink_input); pa_sink_input_unref(o->sink_input); } if (o->rtpoll_item) pa_rtpoll_item_free(o->rtpoll_item); if (o->memblockq) pa_memblockq_free(o->memblockq); if (o->asyncmsgq) pa_asyncmsgq_unref(o->asyncmsgq); pa_xfree(o); } void pa__done(pa_module*m) { struct userdata *u; struct output *o; pa_assert(m); if (!(u = m->userdata)) return; if (u->sink_new_slot) pa_hook_slot_free(u->sink_new_slot); if (u->sink_unlink_slot) pa_hook_slot_free(u->sink_unlink_slot); if (u->sink_state_changed_slot) pa_hook_slot_free(u->sink_state_changed_slot); if (u->sink) pa_sink_unlink(u->sink); if (u->outputs) { while ((o = pa_idxset_first(u->outputs, NULL))) output_free(o); pa_idxset_free(u->outputs, NULL, NULL); } if (u->thread) { pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL); pa_thread_free(u->thread); } pa_thread_mq_done(&u->thread_mq); if (u->sink) pa_sink_unref(u->sink); if (u->rtpoll) pa_rtpoll_free(u->rtpoll); if (u->time_event) u->core->mainloop->time_free(u->time_event); pa_mutex_free(u->mutex); pa_xfree(u); }