/*** This file is part of PulseAudio. This module is based off Lennart Poettering's LADSPA sink and swaps out LADSPA functionality for a STFT OLA based digital equalizer. All new work is published under Pulseaudio's original license. Copyright 2009 Jason Newton Original Author: Copyright 2004-2008 Lennart Poettering PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#undef __SSE2__ #ifdef __SSE2__ #include #include #endif #include "module-equalizer-sink-symdef.h" PA_MODULE_AUTHOR("Jason Newton"); PA_MODULE_DESCRIPTION(_("General Purpose Equalizer")); PA_MODULE_VERSION(PACKAGE_VERSION); PA_MODULE_LOAD_ONCE(FALSE); PA_MODULE_USAGE(_("sink= ")); #define MEMBLOCKQ_MAXLENGTH (16*1024*1024) struct userdata { pa_core *core; pa_module *module; pa_sink *sink, *master; pa_sink_input *sink_input; size_t channels; size_t fft_size;//length (res) of fft size_t window_size;/* *sliding window size *effectively chooses R */ size_t R;/* the hop size between overlapping windows * the latency of the filter, calculated from window_size * based on constraints of COLA and window function */ size_t latency;//Really just R but made into it's own variable //for twiddling with pulseaudio size_t overlap_size;//window_size-R size_t samples_gathered; size_t max_output;//max amount of samples outputable in a single //message size_t target_samples; float *H;//frequency response filter (magnitude based) float *W;//windowing function (time domain) float *work_buffer, **input, **overlap_accum; fftwf_complex *output_window; fftwf_plan forward_plan, inverse_plan; //size_t samplings; float *Hs[2];//thread updatable copies pa_aupdate *a_H; pa_memchunk conv_buffer; pa_memblockq *rendered_q; pa_dbus_protocol *dbus_protocol; char *dbus_path; }; static const char* const valid_modargs[] = { "sink_name", "sink_properties", "master", "format", "rate", "channels", "channel_map", NULL }; static uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p); static void hanning_window(float *W, size_t window_size); static void array_out(const char *name, float *a, size_t length); static void process_samples(struct userdata *u); static void input_buffer(struct userdata *u, pa_memchunk *in); void dsp_logic( float * __restrict__ dst, float * __restrict__ src, float * __restrict__ overlap, const float * __restrict__ H, const float * __restrict__ W, fftwf_complex * __restrict__ output_window, struct userdata *u); static void dbus_init(struct userdata *u); static void dbus_done(struct userdata *u); static void handle_get_all(DBusConnection *conn, DBusMessage *msg, void *_u); static void get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u); static void get_filter(DBusConnection *conn, DBusMessage *msg, void *_u); static void set_filter(DBusConnection *conn, DBusMessage *msg, void *_u); #define v_size 4 #define gettime(x) clock_gettime(CLOCK_MONOTONIC, &x) #define tdiff(x, y) time_diff(&x, &y) #define mround(x, y) (x % y == 0 ? x : ( x / y + 1) * y) uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p) { return ((timeA_p->tv_sec * 1000000000ULL) + timeA_p->tv_nsec) - ((timeB_p->tv_sec * 1000000000ULL) + timeB_p->tv_nsec); } static void hanning_window(float *W, size_t window_size){ //h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2 for(size_t i=0; i < window_size;++i){ W[i] = (float).5*(1-cos(2*M_PI*i/(window_size+1))); } } static void fix_filter(float *H, size_t fft_size){ //divide out the fft gain for(size_t i = 0; i < (fft_size / 2 + 1); ++i){ H[i] /= fft_size; } } void array_out(const char *name, float *a, size_t length){ FILE *p=fopen(name, "w"); if(!p){ pa_log("opening %s failed!", name); return; } for(size_t i = 0; i < length; ++i){ fprintf(p, "%e,", a[i]); //if(i%1000==0){ // fprintf(p, "\n"); //} } fprintf(p, "\n"); fclose(p); } /* Called from I/O thread context */ static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SINK(o)->userdata; switch (code) { case PA_SINK_MESSAGE_GET_LATENCY: { pa_usec_t usec = 0; pa_sample_spec *ss=&u->sink->sample_spec; //size_t fs=pa_frame_size(&(u->sink->sample_spec)); /* Get the latency of the master sink */ if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0) usec = 0; //usec+=pa_bytes_to_usec(u->latency * fs, ss); //usec+=pa_bytes_to_usec(u->samples_gathered * fs, ss); usec += pa_bytes_to_usec(pa_memblockq_get_length(u->rendered_q), ss); /* Add the latency internal to our sink input on top */ usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec); *((pa_usec_t*) data) = usec; return 0; } } return pa_sink_process_msg(o, code, data, offset, chunk); } /* Called from main context */ static int sink_set_state(pa_sink *s, pa_sink_state_t state) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (PA_SINK_IS_LINKED(state) && u->sink_input && PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input))) pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED); return 0; } /* Called from I/O thread context */ static void sink_request_rewind(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); /* Just hand this one over to the master sink */ pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->rendered_q), TRUE, FALSE, FALSE); } /* Called from I/O thread context */ static void sink_update_requested_latency(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); /* Just hand this one over to the master sink */ pa_sink_input_set_requested_latency_within_thread( u->sink_input, pa_sink_get_requested_latency_within_thread(s)); } static void process_samples(struct userdata *u){ pa_memchunk tchunk; size_t fs=pa_frame_size(&(u->sink->sample_spec)); while(u->samples_gathered >= u->R){ float *dst; //pa_log("iter gathered: %ld", u->samples_gathered); //pa_memblockq_drop(u->rendered_q, tchunk.length); tchunk.index=0; tchunk.length=u->R*fs; tchunk.memblock=pa_memblock_new(u->core->mempool, tchunk.length); dst=((float*)pa_memblock_acquire(tchunk.memblock)); for(size_t c=0;c < u->channels; c++) { dsp_logic( u->work_buffer, u->input[c], u->overlap_accum[c], u->H, u->W, u->output_window, u ); pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst + c, fs, u->work_buffer, sizeof(float), u->R); } pa_memblock_release(tchunk.memblock); pa_memblockq_push(u->rendered_q, &tchunk); pa_memblock_unref(tchunk.memblock); u->samples_gathered-=u->R; } } typedef float v4sf __attribute__ ((__aligned__(v_size*sizeof(float)))); typedef union float_vector { float f[v_size]; v4sf v; #ifdef __SSE2__ __m128 m; #endif } float_vector_t; //reference implementation void dsp_logic( float * __restrict__ dst,//used as a temp array too, needs to be fft_length! float * __restrict__ src,/*input data w/ overlap at start, *automatically cycled in routine */ float * __restrict__ overlap,//The size of the overlap const float * __restrict__ H,//The freq. magnitude scalers filter const float * __restrict__ W,//The windowing function fftwf_complex * __restrict__ output_window,//The transformed window'd src struct userdata *u){ //use a linear-phase sliding STFT and overlap-add method (for each channel) //zero padd the data memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float)); //window the data for(size_t j = 0;j < u->window_size; ++j){ dst[j] = W[j] * src[j]; } //Processing is done here! //do fft fftwf_execute_dft_r2c(u->forward_plan, dst, output_window); //perform filtering for(size_t j = 0;j < u->fft_size / 2 + 1; ++j){ u->output_window[j][0] *= u->H[j]; u->output_window[j][1] *= u->H[j]; } //inverse fft fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst); ////debug: tests overlaping add ////and negates ALL PREVIOUS processing ////yields a perfect reconstruction if COLA is held //for(size_t j = 0; j < u->window_size; ++j){ // u->work_buffer[j] = u->W[j] * u->input[c][j]; //} //overlap add and preserve overlap component from this window (linear phase) for(size_t j = 0;j < u->overlap_size; ++j){ u->work_buffer[j] += overlap[j]; overlap[j] = dst[u->R+j]; } ////debug: tests if basic buffering works ////shouldn't modify the signal AT ALL (beyond roundoff) //for(size_t j = 0; j < u->window_size;++j){ // u->work_buffer[j] = u->input[c][j]; //} //preseve the needed input for the next window's overlap memmove(src, src+u->R, ((u->overlap_size + u->samples_gathered) - u->R)*sizeof(float) ); } ////regardless of sse enabled, the loops in here assume ////16 byte aligned addresses and memory allocations divisible by v_size //void dsp_logic( // float * __restrict__ dst,//used as a temp array too, needs to be fft_length! // float * __restrict__ src,/*input data w/ overlap at start, // *automatically cycled in routine // */ // float * __restrict__ overlap,//The size of the overlap // const float * __restrict__ H,//The freq. magnitude scalers filter // const float * __restrict__ W,//The windowing function // fftwf_complex * __restrict__ output_window,//The transformed window'd src // struct userdata *u){//Collection of constants // // const size_t window_size = mround(u->window_size,v_size); // const size_t fft_h = mround(u->fft_size / 2 + 1, v_size / 2); // //const size_t R = mround(u->R, v_size); // const size_t overlap_size = mround(u->overlap_size, v_size); // // //assert(u->samples_gathered >= u->R); // //zero out the bit beyond the real overlap so we don't add garbage // for(size_t j = overlap_size; j > u->overlap_size; --j){ // overlap[j-1] = 0; // } // //use a linear-phase sliding STFT and overlap-add method // //zero padd the data // memset(dst + u->window_size, 0, (u->fft_size - u->window_size)*sizeof(float)); // //window the data // for(size_t j = 0; j < window_size; j += v_size){ // //dst[j] = W[j]*src[j]; // float_vector_t *d = (float_vector_t*) (dst+j); // float_vector_t *w = (float_vector_t*) (W+j); // float_vector_t *s = (float_vector_t*) (src+j); //#if __SSE2__ // d->m = _mm_mul_ps(w->m, s->m); //#else // d->v = w->v * s->v; //#endif // } // //Processing is done here! // //do fft // fftwf_execute_dft_r2c(u->forward_plan, dst, output_window); // // // //perform filtering - purely magnitude based // for(size_t j = 0;j < fft_h; j+=v_size/2){ // //output_window[j][0]*=H[j]; // //output_window[j][1]*=H[j]; // float_vector_t *d = (float_vector_t*)(output_window+j); // float_vector_t h; // h.f[0] = h.f[1] = H[j]; // h.f[2] = h.f[3] = H[j+1]; //#if __SSE2__ // d->m = _mm_mul_ps(d->m, h.m); //#else // d->v = d->v*h->v; //#endif // } // // // //inverse fft // fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst); // // ////debug: tests overlaping add // ////and negates ALL PREVIOUS processing // ////yields a perfect reconstruction if COLA is held // //for(size_t j = 0; j < u->window_size; ++j){ // // dst[j] = W[j]*src[j]; // //} // // //overlap add and preserve overlap component from this window (linear phase) // for(size_t j = 0; j < overlap_size; j+=v_size){ // //dst[j]+=overlap[j]; // //overlap[j]+=dst[j+R]; // float_vector_t *d = (float_vector_t*)(dst+j); // float_vector_t *o = (float_vector_t*)(overlap+j); //#if __SSE2__ // d->m = _mm_add_ps(d->m, o->m); // o->m = ((float_vector_t*)(dst+u->R+j))->m; //#else // d->v = d->v+o->v; // o->v = ((float_vector_t*)(dst+u->R+j))->v; //#endif // } // //memcpy(overlap, dst+u->R, u->overlap_size*sizeof(float)); // // //////debug: tests if basic buffering works // //////shouldn't modify the signal AT ALL (beyond roundoff) // //for(size_t j = 0; j < u->window_size; ++j){ // // dst[j] = src[j]; // //} // // //preseve the needed input for the next window's overlap // memmove(src, src+u->R, // ((u->overlap_size+u->samples_gathered)+-u->R)*sizeof(float) // ); //} void input_buffer(struct userdata *u, pa_memchunk *in){ size_t fs = pa_frame_size(&(u->sink->sample_spec)); size_t samples = in->length/fs; pa_assert_se(samples <= u->target_samples-u->samples_gathered); float *src = (float*) ((uint8_t*) pa_memblock_acquire(in->memblock) + in->index); for(size_t c = 0; c < u->channels; c++) { //buffer with an offset after the overlap from previous //iterations pa_assert_se( u->input[c]+u->overlap_size+u->samples_gathered+samples <= u->input[c]+u->overlap_size+u->target_samples ); pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input[c]+u->overlap_size+u->samples_gathered, sizeof(float), src + c, fs, samples); } u->samples_gathered+=samples; pa_memblock_release(in->memblock); } /* Called from I/O thread context */ static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert(chunk); pa_assert_se(u = i->userdata); pa_assert_se(u->sink); size_t fs = pa_frame_size(&(u->sink->sample_spec)); //size_t samples_requested = nbytes/fs; size_t buffered_samples = pa_memblockq_get_length(u->rendered_q)/fs; pa_memchunk tchunk; chunk->memblock = NULL; if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state)) return -1; //pa_log("start output-buffered %ld, input-buffered %ld, requested %ld",buffered_samples,u->samples_gathered,samples_requested); struct timespec start, end; if(pa_memblockq_peek(u->rendered_q, &tchunk)==0){ *chunk = tchunk; pa_memblockq_drop(u->rendered_q, chunk->length); return 0; } /* Set the H filter */ unsigned H_i = pa_aupdate_read_begin(u->a_H); u->H = u->Hs[H_i]; do{ pa_memchunk *buffer; size_t input_remaining = u->target_samples-u->samples_gathered; pa_assert(input_remaining>0); //collect samples buffer = &u->conv_buffer; buffer->length = input_remaining*fs; buffer->index = 0; pa_memblock_ref(buffer->memblock); pa_sink_render_into(u->sink, buffer); //if(u->sink->thread_info.rewind_requested) // sink_request_rewind(u->sink); //pa_memchunk p; //buffer = &p; //pa_sink_render(u->sink, u->R*fs, buffer); //buffer->length = PA_MIN(input_remaining*fs, buffer->length); //debug block //pa_memblockq_push(u->rendered_q, buffer); //pa_memblock_unref(buffer->memblock); //goto END; //pa_log("asked for %ld input samples, got %ld samples",input_remaining,buffer->length/fs); //copy new input gettime(start); input_buffer(u, buffer); gettime(end); //pa_log("Took %0.5f seconds to setup", tdiff(end, start)*1e-9); pa_memblock_unref(buffer->memblock); pa_assert_se(u->fft_size >= u->window_size); pa_assert_se(u->R < u->window_size); //process every complete block on hand gettime(start); process_samples(u); gettime(end); //pa_log("Took %0.5f seconds to process", tdiff(end, start)*1e-9); buffered_samples = pa_memblockq_get_length(u->rendered_q)/fs; }while(buffered_samples < u->R); //deque from rendered_q and output pa_assert_se(pa_memblockq_peek(u->rendered_q, &tchunk)==0); *chunk = tchunk; pa_memblockq_drop(u->rendered_q, chunk->length); pa_assert_se(chunk->memblock); //pa_log("gave %ld", chunk->length/fs); //pa_log("end pop"); return 0; } /* Called from I/O thread context */ static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; size_t amount = 0; pa_log_debug("Rewind callback!"); pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state)) return; if (u->sink->thread_info.rewind_nbytes > 0) { size_t max_rewrite; max_rewrite = nbytes + pa_memblockq_get_length(u->rendered_q); amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite); u->sink->thread_info.rewind_nbytes = 0; if (amount > 0) { //pa_sample_spec *ss = &u->sink->sample_spec; pa_memblockq_seek(u->rendered_q, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE); pa_log_debug("Resetting equalizer"); u->samples_gathered = 0; } } pa_sink_process_rewind(u->sink, amount); pa_memblockq_rewind(u->rendered_q, nbytes); } /* Called from I/O thread context */ static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_memblockq_set_maxrewind(u->rendered_q, nbytes); pa_sink_set_max_rewind_within_thread(u->sink, nbytes); } /* Called from I/O thread context */ static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; size_t fs = pa_frame_size(&(u->sink->sample_spec)); //pa_sink_set_max_request_within_thread(u->sink, nbytes); pa_sink_set_max_request_within_thread(u->sink, u->R*fs); } /* Called from I/O thread context */ static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; size_t fs = pa_frame_size(&(u->sink->sample_spec)); //pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs); pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs ); //pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); } /* Called from I/O thread context */ static void sink_input_detach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_sink_detach_within_thread(u->sink); pa_sink_set_asyncmsgq(u->sink, NULL); pa_sink_set_rtpoll(u->sink, NULL); } /* Called from I/O thread context */ static void sink_input_attach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_sink_set_asyncmsgq(u->sink, i->sink->asyncmsgq); pa_sink_set_rtpoll(u->sink, i->sink->rtpoll); pa_sink_attach_within_thread(u->sink); size_t fs = pa_frame_size(&(u->sink->sample_spec)); //pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs); //pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->master->thread_info.max_latency); //TODO: setting this guy minimizes drop outs but doesn't get rid //of them completely, figure out why pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs); //TODO: this guy causes dropouts constantly+rewinds, it's unusable //pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->master->thread_info.max_latency); } /* Called from main context */ static void sink_input_kill_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_unlink(u->sink); pa_sink_input_unlink(u->sink_input); pa_sink_unref(u->sink); u->sink = NULL; pa_sink_input_unref(u->sink_input); u->sink_input = NULL; pa_module_unload_request(u->module, TRUE); } /* Called from IO thread context */ static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); /* If we are added for the first time, ask for a rewinding so that * we are heard right-away. */ if (PA_SINK_INPUT_IS_LINKED(state) && i->thread_info.state == PA_SINK_INPUT_INIT) { pa_log_debug("Requesting rewind due to state change."); pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE); } } /* Called from main context */ static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); return u->sink != dest; } //ensure's memory allocated is a multiple of v_size //and aligned static void * alloc(size_t x,size_t s){ size_t f = mround(x*s, sizeof(float)*v_size); pa_assert_se(f >= x*s); //printf("requested %ld floats=%ld bytes, rem=%ld\n", x, x*sizeof(float), x*sizeof(float)%16); //printf("giving %ld floats=%ld bytes, rem=%ld\n", f, f*sizeof(float), f*sizeof(float)%16); float *t = fftwf_malloc(f); memset(t, 0, f); return t; } int pa__init(pa_module*m) { struct userdata *u; pa_sample_spec ss; pa_channel_map map; pa_modargs *ma; const char *z; pa_sink *master; pa_sink_input_new_data sink_input_data; pa_sink_new_data sink_data; pa_bool_t *use_default = NULL; size_t fs; pa_assert(m); if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log("Failed to parse module arguments."); goto fail; } if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) { pa_log("Master sink not found"); goto fail; } ss = master->sample_spec; ss.format = PA_SAMPLE_FLOAT32; map = master->channel_map; if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) { pa_log("Invalid sample format specification or channel map"); goto fail; } fs = pa_frame_size(&ss); u = pa_xnew0(struct userdata, 1); u->core = m->core; u->module = m; m->userdata = u; u->master = master; u->sink = NULL; u->sink_input = NULL; u->channels = ss.channels; u->fft_size = pow(2, ceil(log(ss.rate)/log(2))); pa_log("fft size: %ld", u->fft_size); u->window_size = 7999; u->R = (u->window_size+1)/2; u->overlap_size = u->window_size-u->R; u->target_samples = 1*u->R; u->samples_gathered = 0; u->max_output = pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss); u->rendered_q = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH, u->target_samples*fs, fs, fs, 0, 0, NULL); u->a_H = pa_aupdate_new(); u->conv_buffer.memblock = pa_memblock_new(u->core->mempool, u->target_samples*fs); u->latency = u->R; for(size_t i = 0; i < 2; ++i){ u->Hs[i] = alloc((u->fft_size / 2 + 1), sizeof(float)); } u->W = alloc(u->window_size, sizeof(float)); u->work_buffer = alloc(u->fft_size, sizeof(float)); memset(u->work_buffer, 0, u->fft_size*sizeof(float)); u->input = (float **)pa_xmalloc0(sizeof(float *)*u->channels); u->overlap_accum = (float **)pa_xmalloc0(sizeof(float *)*u->channels); for(size_t c = 0; c < u->channels; ++c){ u->input[c] = alloc(u->overlap_size+u->target_samples, sizeof(float)); pa_assert_se(u->input[c]); memset(u->input[c], 0, (u->overlap_size+u->target_samples)*sizeof(float)); pa_assert_se(u->input[c]); u->overlap_accum[c] = alloc(u->overlap_size, sizeof(float)); pa_assert_se(u->overlap_accum[c]); memset(u->overlap_accum[c], 0, u->overlap_size*sizeof(float)); } u->output_window = alloc((u->fft_size / 2 + 1), sizeof(fftwf_complex)); u->forward_plan = fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_MEASURE); u->inverse_plan = fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_MEASURE); hanning_window(u->W, u->window_size); unsigned H_i = pa_aupdate_write_begin(u->a_H); u->H = u->Hs[H_i]; for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){ u->H[i] = 1.0; } //TODO cut this out and leave it for the client side //const int freqs[] = {0,25,50,100,200,300,400,800,1500, // 2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000, // 13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX}; //const float coefficients[] = {1,1,1,1,1,1,1,1,1,1, // 1,1,1,1,1,1,1,1, // 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; //const size_t ncoefficients = sizeof(coefficients)/sizeof(float); //pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float)); //float *freq_translated = (float *) pa_xmalloc0(sizeof(float)*(ncoefficients)); //freq_translated[0] = 1; ////Translate the frequencies in their natural sampling rate to the new sampling rate frequencies //for(size_t i = 1; i < ncoefficients-1; ++i){ // freq_translated[i] = ((float)freqs[i]*u->fft_size)/ss.rate; // //pa_log("i: %ld: %d , %g",i, freqs[i], freq_translated[i]); // pa_assert_se(freq_translated[i] >= freq_translated[i-1]); //} //freq_translated[ncoefficients-1] = FLT_MAX; // ////Interpolate the specified frequency band values //u->H[0] = 1; //for(size_t i = 1, j = 0; i < (u->fft_size / 2 + 1); ++i){ // pa_assert_se(j < ncoefficients); // //max frequency range passed, consider the rest as one band // if(freq_translated[j+1] >= FLT_MAX){ // for(; i < (u->fft_size / 2 + 1); ++i){ // u->H[i] = coefficients[j]; // } // break; // } // //pa_log("i: %d, j: %d, freq: %f", i, j, freq_translated[j]); // //pa_log("interp: %0.4f %0.4f", freq_translated[j], freq_translated[j+1]); // pa_assert_se(freq_translated[j] < freq_translated[j+1]); // pa_assert_se(i >= freq_translated[j]); // pa_assert_se(i <= freq_translated[j+1]); // //bilinear-inerpolation of coefficients specified // float c0 = (i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]); // pa_assert_se(c0 >= 0&&c0 <= 1.0); // u->H[i] = ((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]); // pa_assert_se(u->H[i]>0); // while(i >= floor(freq_translated[j+1])){ // j++; // } //} //pa_xfree(freq_translated); fix_filter(u->H, u->fft_size); pa_aupdate_write_swap(u->a_H); pa_aupdate_write_end(u->a_H); /* Create sink */ pa_sink_new_data_init(&sink_data); sink_data.driver = __FILE__; sink_data.module = m; if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL)))) sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name); sink_data.namereg_fail = FALSE; pa_sink_new_data_set_sample_spec(&sink_data, &ss); pa_sink_new_data_set_channel_map(&sink_data, &map); z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer"); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter"); if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) { pa_log("Invalid properties"); pa_sink_new_data_done(&sink_data); goto fail; } u->sink = pa_sink_new(m->core, &sink_data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY); pa_sink_new_data_done(&sink_data); if (!u->sink) { pa_log("Failed to create sink."); goto fail; } u->sink->parent.process_msg = sink_process_msg; u->sink->set_state = sink_set_state; u->sink->update_requested_latency = sink_update_requested_latency; u->sink->request_rewind = sink_request_rewind; u->sink->userdata = u; pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq); pa_sink_set_rtpoll(u->sink, master->rtpoll); pa_sink_set_max_request(u->sink, u->R*fs); //pa_sink_set_fixed_latency(u->sink, pa_bytes_to_usec(u->R*fs, &ss)); /* Create sink input */ pa_sink_input_new_data_init(&sink_input_data); sink_input_data.driver = __FILE__; sink_input_data.module = m; sink_input_data.sink = u->master; pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream"); pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter"); pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss); pa_sink_input_new_data_set_channel_map(&sink_input_data, &map); pa_sink_input_new(&u->sink_input, m->core, &sink_input_data, PA_SINK_INPUT_DONT_MOVE); pa_sink_input_new_data_done(&sink_input_data); if (!u->sink_input) goto fail; u->sink_input->pop = sink_input_pop_cb; u->sink_input->process_rewind = sink_input_process_rewind_cb; u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb; u->sink_input->update_max_request = sink_input_update_max_request_cb; u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb; u->sink_input->kill = sink_input_kill_cb; u->sink_input->attach = sink_input_attach_cb; u->sink_input->detach = sink_input_detach_cb; u->sink_input->state_change = sink_input_state_change_cb; u->sink_input->may_move_to = sink_input_may_move_to_cb; u->sink_input->userdata = u; pa_sink_put(u->sink); pa_sink_input_put(u->sink_input); pa_modargs_free(ma); pa_xfree(use_default); dbus_init(u); return 0; fail: if (ma) pa_modargs_free(ma); pa_xfree(use_default); pa__done(m); return -1; } int pa__get_n_used(pa_module *m) { struct userdata *u; pa_assert(m); pa_assert_se(u = m->userdata); return pa_sink_linked_by(u->sink); } void pa__done(pa_module*m) { struct userdata *u; pa_assert(m); if (!(u = m->userdata)) return; dbus_done(u); if (u->sink) { pa_sink_unlink(u->sink); pa_sink_unref(u->sink); } if (u->sink_input) { pa_sink_input_unlink(u->sink_input); pa_sink_input_unref(u->sink_input); } if(u->conv_buffer.memblock) pa_memblock_unref(u->conv_buffer.memblock); if (u->rendered_q) pa_memblockq_free(u->rendered_q); fftwf_destroy_plan(u->inverse_plan); fftwf_destroy_plan(u->forward_plan); pa_xfree(u->output_window); for(size_t c=0; c < u->channels; ++c){ pa_xfree(u->overlap_accum[c]); pa_xfree(u->input[c]); } pa_xfree(u->overlap_accum); pa_xfree(u->input); pa_xfree(u->work_buffer); pa_xfree(u->W); for(size_t i = 0; i < 2; ++i){ pa_xfree(u->Hs[i]); } pa_xfree(u); } enum property_handler_index { PROPERTY_HANDLER_N_COEFS, PROPERTY_HANDLER_COEFS, PROPERTY_HANDLER_MAX }; static pa_dbus_property_handler property_handlers[PROPERTY_HANDLER_MAX]={ [PROPERTY_HANDLER_N_COEFS]{.property_name="n_filter_coefficients",.type="u",.get_cb=get_n_coefs,.set_cb=NULL}, [PROPERTY_HANDLER_COEFS]{.property_name="filter_coefficients",.type="ai",.get_cb=get_filter,.set_cb=set_filter} }; //static pa_dbus_arg_info new_equalizer_args[] = { { "path","o",NULL} }; //static pa_dbus_signal_info signals[SIGNAL_MAX] = { // [SIGNAL_NEW_EQUALIZER]={.name="NewEqualizer",.arguments=new_equalizer_args,.n_arguments=1} //}; #define EXTNAME "org.PulseAudio.Ext.Equalizing1" static pa_dbus_interface_info interface_info={ .name=EXTNAME ".Equalizer", .method_handlers=NULL, .n_method_handlers=0, .property_handlers=property_handlers, .n_property_handlers=PROPERTY_HANDLER_MAX, .get_all_properties_cb=handle_get_all, .signals=NULL, .n_signals=0 }; void dbus_init(struct userdata *u){ u->dbus_protocol=pa_dbus_protocol_get(u->core); u->dbus_path=pa_sprintf_malloc("/org/pulseaudio/core1/sink%d", u->sink->index); pa_dbus_protocol_add_interface(u->dbus_protocol, u->dbus_path, &interface_info, u); pa_dbus_protocol_register_extension(u->dbus_protocol, EXTNAME); } void dbus_done(struct userdata *u){ pa_dbus_protocol_unregister_extension(u->dbus_protocol, EXTNAME); pa_dbus_protocol_remove_interface(u->dbus_protocol, u->dbus_path, EXTNAME); pa_xfree(u->dbus_path); pa_dbus_protocol_unref(u->dbus_protocol); } void get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u){ pa_assert(conn); pa_assert(msg); pa_assert(_u); struct userdata *u=(struct userdata *)_u; uint32_t n_coefs=(uint32_t)(u->fft_size / 2 + 1); pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &n_coefs); } void get_filter(DBusConnection *conn, DBusMessage *msg, void *_u){ pa_assert(conn); pa_assert(msg); pa_assert(_u); struct userdata *u=(struct userdata *)_u; unsigned n_coefs=(unsigned)(u->fft_size / 2 + 1); double *H_=(double *)pa_xmalloc0(n_coefs*sizeof(double)); unsigned H_i=pa_aupdate_read_begin(u->a_H); float *H=u->Hs[H_i]; for(size_t i = 0;i < u->fft_size / 2 + 1; ++i){ H_[i]=H[i]; } pa_aupdate_read_end(u->a_H); pa_dbus_send_basic_array_variant_reply(conn, msg, DBUS_TYPE_DOUBLE, &H_, n_coefs); pa_xfree(H_); } void set_filter(DBusConnection *conn, DBusMessage *msg, void *_u){ pa_assert(conn); pa_assert(msg); pa_assert(_u); struct userdata *u=(struct userdata *)_u; double *H_; unsigned _n_coefs; pa_dbus_get_fixed_array_set_property_arg(conn, msg, DBUS_TYPE_DOUBLE, &H_, &_n_coefs); if(_n_coefs!=u->fft_size / 2 + 1){ pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "This filter takes exactly %ld coefficients, you gave %d", u->fft_size / 2 + 1, _n_coefs); return; } unsigned H_i = pa_aupdate_write_begin(u->a_H); float *H = u->Hs[H_i]; for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){ H[i] = (float)H_[i]; } pa_aupdate_write_swap(u->a_H); pa_aupdate_write_end(u->a_H); pa_dbus_send_empty_reply(conn, msg); } void handle_get_all(DBusConnection *conn, DBusMessage *msg, void *_u){ pa_assert(conn); pa_assert(msg); pa_assert(_u); struct userdata *u = (struct userdata *)_u; DBusMessage *reply = NULL; DBusMessageIter msg_iter, dict_iter; int n_coefs=(unsigned)(u->fft_size / 2 + 1); double *H_=(double *)pa_xmalloc0(n_coefs*sizeof(double)); unsigned H_i=pa_aupdate_read_begin(u->a_H); float *H=u->Hs[H_i]; for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){ H_[i] = H[i]; } pa_aupdate_read_end(u->a_H); pa_assert_se((reply = dbus_message_new_method_return(msg))); dbus_message_iter_init_append(reply, &msg_iter); pa_assert_se(dbus_message_iter_open_container(&msg_iter, DBUS_TYPE_ARRAY, "{sv}", &dict_iter)); pa_dbus_append_basic_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_N_COEFS].property_name, DBUS_TYPE_UINT32, &n_coefs); pa_dbus_append_basic_array_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_COEFS].property_name, DBUS_TYPE_DOUBLE, H_, n_coefs); pa_assert_se(dbus_message_iter_close_container(&msg_iter, &dict_iter)); pa_assert_se(dbus_connection_send(conn, reply, NULL)); dbus_message_unref(reply); pa_xfree(H_); }