/*** This file is part of PulseAudio. This module is based off Lennart Poettering's LADSPA sink and swaps out LADSPA functionality for a STFT OLA based digital equalizer. All new work is published under Pulseaudio's original license. Copyright 2009 Jason Newton Original Author: Copyright 2004-2008 Lennart Poettering PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#undef __SSE2__ #ifdef __SSE2__ #include #include #endif #include "module-equalizer-sink-symdef.h" PA_MODULE_AUTHOR("Jason Newton"); PA_MODULE_DESCRIPTION(_("General Purpose Equalizer")); PA_MODULE_VERSION(PACKAGE_VERSION); PA_MODULE_LOAD_ONCE(FALSE); PA_MODULE_USAGE(_("sink= ")); #define MEMBLOCKQ_MAXLENGTH (16*1024*1024) struct userdata { pa_core *core; pa_module *module; pa_sink *sink, *master; pa_sink_input *sink_input; size_t channels; size_t fft_size;//length (res) of fft size_t window_size;/* *sliding window size *effectively chooses R */ size_t R;/* the hop size between overlapping windows * the latency of the filter, calculated from window_size * based on constraints of COLA and window function */ size_t latency;//Really just R but made into it's own variable //for twiddling with pulseaudio size_t overlap_size;//window_size-R size_t samples_gathered; size_t max_output;//max amount of samples outputable in a single //message size_t target_samples; float *H;//frequency response filter (magnitude based) float *W;//windowing function (time domain) float *work_buffer,**input,**overlap_accum,**output_buffer; fftwf_complex *output_window; fftwf_plan forward_plan,inverse_plan; //size_t samplings; pa_memchunk conv_buffer; pa_memblockq *rendered_q; }; static const char* const valid_modargs[] = { "sink_name", "sink_properties", "master", "format", "rate", "channels", "channel_map", NULL }; static uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p); static void hanning_window(float *W,size_t window_size); static void array_out(const char *name,float *a,size_t length); static void process_samples(struct userdata *u); static void input_buffer(struct userdata *u,pa_memchunk *in); void dsp_logic( float * __restrict__ dst, float * __restrict__ src, float * __restrict__ overlap, const float * __restrict__ H, const float * __restrict__ W, fftwf_complex * __restrict__ output_window, struct userdata *u); #define v_size 4 #define gettime(x) clock_gettime(CLOCK_MONOTONIC,&x) #define tdiff(x,y) time_diff(&x,&y) #define mround(x,y) (x%y==0?x:(x/y+1)*y) uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p) { return ((timeA_p->tv_sec * 1000000000ULL) + timeA_p->tv_nsec) - ((timeB_p->tv_sec * 1000000000ULL) + timeB_p->tv_nsec); } void hanning_window(float *W,size_t window_size){ //h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2 for(size_t i=0;iuserdata; switch (code) { case PA_SINK_MESSAGE_GET_LATENCY: { pa_usec_t usec = 0; pa_sample_spec *ss=&u->sink->sample_spec; size_t fs=pa_frame_size(&(u->sink->sample_spec)); /* Get the latency of the master sink */ if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0) usec = 0; //usec+=pa_bytes_to_usec(u->latency*fs,ss); //usec+=pa_bytes_to_usec(u->samples_gathered*fs,ss); usec += pa_bytes_to_usec(pa_memblockq_get_length(u->rendered_q), ss); /* Add the latency internal to our sink input on top */ usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec); *((pa_usec_t*) data) = usec; return 0; } } return pa_sink_process_msg(o, code, data, offset, chunk); } /* Called from main context */ static int sink_set_state(pa_sink *s, pa_sink_state_t state) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (PA_SINK_IS_LINKED(state) && u->sink_input && PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input))) pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED); return 0; } /* Called from I/O thread context */ static void sink_request_rewind(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); /* Just hand this one over to the master sink */ pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->rendered_q), TRUE, FALSE, FALSE); } /* Called from I/O thread context */ static void sink_update_requested_latency(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); /* Just hand this one over to the master sink */ pa_sink_input_set_requested_latency_within_thread( u->sink_input, pa_sink_get_requested_latency_within_thread(s)); } static void process_samples(struct userdata *u){ pa_memchunk tchunk; size_t fs=pa_frame_size(&(u->sink->sample_spec)); while(u->samples_gathered>=u->R){ float *dst; //pa_log("iter gathered: %ld",u->samples_gathered); //pa_memblockq_drop(u->rendered_q, tchunk.length); tchunk.index=0; tchunk.length=u->R*fs; tchunk.memblock=pa_memblock_new(u->core->mempool,tchunk.length); dst=((float*)pa_memblock_acquire(tchunk.memblock)); for (size_t c=0;cchannels;c++) { dsp_logic( u->work_buffer, u->input[c], u->overlap_accum[c], u->H, u->W, u->output_window, u ); pa_sample_clamp(PA_SAMPLE_FLOAT32NE,dst+c,fs,u->work_buffer,sizeof(float),u->R); } pa_memblock_release(tchunk.memblock); pa_memblockq_push(u->rendered_q, &tchunk); pa_memblock_unref(tchunk.memblock); u->samples_gathered-=u->R; } } typedef float v4sf __attribute__ ((__aligned__(v_size*sizeof(float)))); typedef union float_vector { float f[v_size]; v4sf v; #ifdef __SSE2__ __m128 m; #endif } float_vector_t; ////reference implementation //void dsp_logic( // float * __restrict__ dst,//used as a temp array too, needs to be fft_length! // float * __restrict__ src,/*input data w/ overlap at start, // *automatically cycled in routine // */ // float * __restrict__ overlap,//The size of the overlap // const float * __restrict__ H,//The freq. magnitude scalers filter // const float * __restrict__ W,//The windowing function // fftwf_complex * __restrict__ output_window,//The transformed window'd src // struct userdata *u){ // //use a linear-phase sliding STFT and overlap-add method (for each channel) // //zero padd the data // memset(dst+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float)); // //window the data // for(size_t j=0;jwindow_size;++j){ // dst[j]=W[j]*src[j]; // } // //Processing is done here! // //do fft // fftwf_execute_dft_r2c(u->forward_plan,dst,output_window); // //perform filtering // for(size_t j=0;jfft_size/2+1;++j){ // u->output_window[j][0]*=u->H[j]; // u->output_window[j][1]*=u->H[j]; // } // //inverse fft // fftwf_execute_dft_c2r(u->inverse_plan,output_window,dst); // ////debug: tests overlaping add // ////and negates ALL PREVIOUS processing // ////yields a perfect reconstruction if COLA is held // //for(size_t j=0;jwindow_size;++j){ // // u->work_buffer[j]=u->W[j]*u->input[c][j]; // //} // // //overlap add and preserve overlap component from this window (linear phase) // for(size_t j=0;joverlap_size;++j){ // u->work_buffer[j]+=overlap[j]; // overlap[j]=dst[u->R+j]; // } // ////debug: tests if basic buffering works // ////shouldn't modify the signal AT ALL (beyond roundoff) // //for(size_t j=0;jwindow_size;++j){ // // u->work_buffer[j]=u->input[c][j]; // //} // // //preseve the needed input for the next window's overlap // memmove(src,src+u->R, // (u->samples_gathered+u->overlap_size-u->R)*sizeof(float) // ); //} //regardless of sse enabled, the loops in here assume //16 byte aligned addresses and memory allocations divisible by v_size void dsp_logic( float * __restrict__ dst,//used as a temp array too, needs to be fft_length! float * __restrict__ src,/*input data w/ overlap at start, *automatically cycled in routine */ float * __restrict__ overlap,//The size of the overlap const float * __restrict__ H,//The freq. magnitude scalers filter const float * __restrict__ W,//The windowing function fftwf_complex * __restrict__ output_window,//The transformed window'd src struct userdata *u){//Collection of constants const size_t window_size=mround(u->window_size,v_size); const size_t fft_h=mround(u->fft_size/2+1,v_size/2); const size_t R=mround(u->R,v_size); const size_t overlap_size=mround(u->overlap_size,v_size); //assert(u->samples_gathered>=u->R); //zero out the bit beyond the real overlap so we don't add garbage for(size_t j=overlap_size;j>u->overlap_size;--j){ overlap[j-1]=0; } //use a linear-phase sliding STFT and overlap-add method //zero padd the data memset(dst+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float)); //window the data for(size_t j=0;jm=_mm_mul_ps(w->m,s->m); #else d->v=w->v*s->v; #endif } //Processing is done here! //do fft fftwf_execute_dft_r2c(u->forward_plan,dst,output_window); //perform filtering - purely magnitude based for(size_t j=0;jm=_mm_mul_ps(d->m,h.m); #else d->v=d->v*h->v; #endif } //inverse fft fftwf_execute_dft_c2r(u->inverse_plan,output_window,dst); ////debug: tests overlaping add ////and negates ALL PREVIOUS processing ////yields a perfect reconstruction if COLA is held //for(size_t j=0;jwindow_size;++j){ // dst[j]=W[j]*src[j]; //} //overlap add and preserve overlap component from this window (linear phase) for(size_t j=0;jm=_mm_add_ps(d->m,o->m); o->m=((float_vector_t*)(dst+u->R+j))->m; #else d->v=d->v+o->v; o->v=((float_vector_t*)(dst+u->R+j))->v; #endif } //memcpy(overlap,dst+u->R,u->overlap_size*sizeof(float)); //////debug: tests if basic buffering works //////shouldn't modify the signal AT ALL (beyond roundoff) //for(size_t j=0;jwindow_size;++j){ // dst[j]=src[j]; //} //preseve the needed input for the next window's overlap memmove(src,src+u->R, (u->overlap_size+u->samples_gathered-u->R)*sizeof(float) ); } void input_buffer(struct userdata *u,pa_memchunk *in){ size_t fs=pa_frame_size(&(u->sink->sample_spec)); size_t samples=in->length/fs; pa_assert_se(samples<=u->target_samples-u->samples_gathered); float *src = (float*) ((uint8_t*) pa_memblock_acquire(in->memblock) + in->index); for (size_t c=0;cchannels;c++) { //buffer with an offset after the overlap from previous //iterations pa_assert_se( u->input[c]+u->overlap_size+u->samples_gathered+samples<=u->input[c]+u->target_samples+u->overlap_size ); pa_sample_clamp(PA_SAMPLE_FLOAT32NE,u->input[c]+u->overlap_size+u->samples_gathered,sizeof(float),src+c,fs,samples); } u->samples_gathered+=samples; pa_memblock_release(in->memblock); } /* Called from I/O thread context */ static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert(chunk); pa_assert_se(u = i->userdata); pa_assert_se(u->sink); size_t fs=pa_frame_size(&(u->sink->sample_spec)); size_t samples_requested=nbytes/fs; size_t buffered_samples=pa_memblockq_get_length(u->rendered_q)/fs; pa_memchunk tchunk; chunk->memblock=NULL; if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state)) return -1; //pa_log("start output-buffered %ld, input-buffered %ld, requested %ld",buffered_samples,u->samples_gathered,samples_requested); struct timespec start,end; if(pa_memblockq_peek(u->rendered_q,&tchunk)==0){ *chunk=tchunk; pa_memblockq_drop(u->rendered_q, chunk->length); return 0; } do{ pa_memchunk *buffer; size_t input_remaining=u->target_samples-u->samples_gathered; pa_assert(input_remaining>0); //collect samples buffer=&u->conv_buffer; buffer->length=input_remaining*fs; buffer->index=0; pa_memblock_ref(buffer->memblock); pa_sink_render_into(u->sink,buffer); //if(u->sink->thread_info.rewind_requested) // sink_request_rewind(u->sink); //pa_memchunk p; //buffer=&p; //pa_sink_render(u->sink,u->R*fs,buffer); //buffer->length=PA_MIN(input_remaining*fs,buffer->length); //debug block //pa_memblockq_push(u->rendered_q,buffer); //pa_memblock_unref(buffer->memblock); //goto END; //pa_log("asked for %ld input samples, got %ld samples",input_remaining,buffer->length/fs); //copy new input gettime(start); input_buffer(u,buffer); gettime(end); //pa_log("Took %0.5f seconds to setup",tdiff(end,start)*1e-9); pa_memblock_unref(buffer->memblock); pa_assert_se(u->fft_size>=u->window_size); pa_assert_se(u->Rwindow_size); //process every complete block on hand gettime(start); process_samples(u); gettime(end); //pa_log("Took %0.5f seconds to process",tdiff(end,start)*1e-9); buffered_samples=pa_memblockq_get_length(u->rendered_q)/fs; }while(buffered_samplesR); //deque from rendered_q and output pa_assert_se(pa_memblockq_peek(u->rendered_q,&tchunk)==0); *chunk=tchunk; pa_memblockq_drop(u->rendered_q, chunk->length); pa_assert_se(chunk->memblock); //pa_log("gave %ld",chunk->length/fs); //pa_log("end pop"); return 0; } /* Called from I/O thread context */ static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; size_t amount = 0; pa_log_debug("Rewind callback!"); pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state)) return; if (u->sink->thread_info.rewind_nbytes > 0) { size_t max_rewrite; max_rewrite = nbytes + pa_memblockq_get_length(u->rendered_q); amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite); u->sink->thread_info.rewind_nbytes = 0; if (amount > 0) { //pa_sample_spec *ss=&u->sink->sample_spec; pa_memblockq_seek(u->rendered_q, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE); pa_log_debug("Resetting equalizer"); u->samples_gathered=0; } } pa_sink_process_rewind(u->sink, amount); pa_memblockq_rewind(u->rendered_q, nbytes); } /* Called from I/O thread context */ static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_memblockq_set_maxrewind(u->rendered_q, nbytes); pa_sink_set_max_rewind_within_thread(u->sink, nbytes); } /* Called from I/O thread context */ static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; size_t fs=pa_frame_size(&(u->sink->sample_spec)); pa_sink_set_max_request_within_thread(u->sink, nbytes); //pa_sink_set_max_request_within_thread(u->sink, u->R*fs); } /* Called from I/O thread context */ static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; size_t fs=pa_frame_size(&(u->sink->sample_spec)); pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs); //pa_sink_set_latency_range_within_thread(u->sink,u->latency*fs ,u->latency*fs ); //pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); } /* Called from I/O thread context */ static void sink_input_detach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_sink_detach_within_thread(u->sink); pa_sink_set_asyncmsgq(u->sink, NULL); pa_sink_set_rtpoll(u->sink, NULL); } /* Called from I/O thread context */ static void sink_input_attach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_sink_set_asyncmsgq(u->sink, i->sink->asyncmsgq); pa_sink_set_rtpoll(u->sink, i->sink->rtpoll); pa_sink_attach_within_thread(u->sink); size_t fs=pa_frame_size(&(u->sink->sample_spec)); //pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs); //pa_sink_set_latency_range_within_thread(u->sink,u->latency*fs, u->master->thread_info.max_latency); //TODO: setting this guy minimizes drop outs but doesn't get rid //of them completely, figure out why pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs); //TODO: this guy causes dropouts constantly+rewinds, it's unusable //pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->master->thread_info.max_latency); } /* Called from main context */ static void sink_input_kill_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_unlink(u->sink); pa_sink_input_unlink(u->sink_input); pa_sink_unref(u->sink); u->sink = NULL; pa_sink_input_unref(u->sink_input); u->sink_input = NULL; pa_module_unload_request(u->module, TRUE); } /* Called from IO thread context */ static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); /* If we are added for the first time, ask for a rewinding so that * we are heard right-away. */ if (PA_SINK_INPUT_IS_LINKED(state) && i->thread_info.state == PA_SINK_INPUT_INIT) { pa_log_debug("Requesting rewind due to state change."); pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE); } } /* Called from main context */ static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); return u->sink != dest; } //ensure's memory allocated is a multiple of v_size //and aligned static void * alloc(size_t x,size_t s){ size_t f=mround(x*s,sizeof(float)*v_size); //printf("requested %ld floats=%ld bytes, rem=%ld\n",x,x*sizeof(float),x*sizeof(float)%16); //printf("giving %ld floats=%ld bytes, rem=%ld\n",f,f*sizeof(float),f*sizeof(float)%16); return fftwf_malloc(f*s); } int pa__init(pa_module*m) { struct userdata *u; pa_sample_spec ss; pa_channel_map map; pa_modargs *ma; const char *z; pa_sink *master; pa_sink_input_new_data sink_input_data; pa_sink_new_data sink_data; pa_bool_t *use_default = NULL; size_t fs; pa_assert(m); if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log("Failed to parse module arguments."); goto fail; } if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) { pa_log("Master sink not found"); goto fail; } ss = master->sample_spec; ss.format = PA_SAMPLE_FLOAT32; map = master->channel_map; if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) { pa_log("Invalid sample format specification or channel map"); goto fail; } fs=pa_frame_size(&ss); u = pa_xnew0(struct userdata, 1); u->core = m->core; u->module = m; m->userdata = u; u->master = master; u->sink = NULL; u->sink_input = NULL; u->channels=ss.channels; u->fft_size=pow(2,ceil(log(ss.rate)/log(2))); pa_log("fft size: %ld",u->fft_size); u->window_size=15999; u->R=(u->window_size+1)/2; u->overlap_size=u->window_size-u->R; u->target_samples=1*u->R; u->samples_gathered=0; u->max_output=pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss); u->rendered_q = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH,u->target_samples*fs, fs, fs, 0, 0, NULL); u->conv_buffer.memblock=pa_memblock_new(u->core->mempool,u->target_samples*fs); u->latency=u->R; u->H=alloc((u->fft_size/2+1),sizeof(fftwf_complex)); u->W=alloc(u->window_size,sizeof(float)); u->work_buffer=alloc(u->fft_size,sizeof(float)); memset(u->work_buffer,0,u->fft_size*sizeof(float)); u->input=(float **)malloc(sizeof(float *)*u->channels); u->overlap_accum=(float **)malloc(sizeof(float *)*u->channels); u->output_buffer=(float **)malloc(sizeof(float *)*u->channels); for(size_t c=0;cchannels;++c){ u->input[c]=alloc(u->target_samples+u->overlap_size,sizeof(float)); pa_assert_se(u->input[c]); memset(u->input[c],0,(u->target_samples+u->overlap_size)*sizeof(float)); pa_assert_se(u->input[c]); u->overlap_accum[c]=alloc(u->overlap_size,sizeof(float)); pa_assert_se(u->overlap_accum[c]); memset(u->overlap_accum[c],0,u->overlap_size*sizeof(float)); u->output_buffer[c]=alloc(u->window_size,sizeof(float)); pa_assert_se(u->output_buffer[c]); } u->output_window=alloc((u->fft_size/2+1),sizeof(fftwf_complex)); u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_MEASURE); u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_MEASURE); hanning_window(u->W,u->window_size); const int freqs[]={0,25,50,100,200,300,400,800,1500, 2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000, 13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX}; const float coefficients[]={1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; const size_t ncoefficients=sizeof(coefficients)/sizeof(float); pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float)); float *freq_translated=(float *) malloc(sizeof(float)*(ncoefficients)); freq_translated[0]=1; //Translate the frequencies in their natural sampling rate to the new sampling rate frequencies for(size_t i=1;ifft_size)/ss.rate; //pa_log("i: %ld: %d , %g",i,freqs[i],freq_translated[i]); pa_assert_se(freq_translated[i]>=freq_translated[i-1]); } freq_translated[ncoefficients-1]=FLT_MAX; //Interpolate the specified frequency band values u->H[0]=1; for(size_t i=1,j=0;i<(u->fft_size/2+1);++i){ pa_assert_se(j=FLT_MAX){ for(;i<(u->fft_size/2+1);++i){ u->H[i]=coefficients[j]; } break; } //pa_log("i: %d, j: %d, freq: %f",i,j,freq_translated[j]); //pa_log("interp: %0.4f %0.4f",freq_translated[j],freq_translated[j+1]); pa_assert_se(freq_translated[j]=freq_translated[j]); pa_assert_se(i<=freq_translated[j+1]); //bilinear-inerpolation of coefficients specified float c0=(i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]); pa_assert_se(c0>=0&&c0<=1.0); u->H[i]=((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]); pa_assert_se(u->H[i]>0); while(i>=floor(freq_translated[j+1])){ j++; } } //divide out the fft gain for(size_t i=0;i<(u->fft_size/2+1);++i){ u->H[i]/=u->fft_size; } free(freq_translated); /* Create sink */ pa_sink_new_data_init(&sink_data); sink_data.driver = __FILE__; sink_data.module = m; if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL)))) sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name); sink_data.namereg_fail = FALSE; pa_sink_new_data_set_sample_spec(&sink_data, &ss); pa_sink_new_data_set_channel_map(&sink_data, &map); z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer"); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter"); if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) { pa_log("Invalid properties"); pa_sink_new_data_done(&sink_data); goto fail; } u->sink = pa_sink_new(m->core, &sink_data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY); pa_sink_new_data_done(&sink_data); if (!u->sink) { pa_log("Failed to create sink."); goto fail; } u->sink->parent.process_msg = sink_process_msg; u->sink->set_state = sink_set_state; u->sink->update_requested_latency = sink_update_requested_latency; u->sink->request_rewind = sink_request_rewind; u->sink->userdata = u; pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq); pa_sink_set_rtpoll(u->sink, master->rtpoll); pa_sink_set_max_request(u->sink,u->R*fs); //pa_sink_set_fixed_latency(u->sink,pa_bytes_to_usec(u->R*fs,&ss)); /* Create sink input */ pa_sink_input_new_data_init(&sink_input_data); sink_input_data.driver = __FILE__; sink_input_data.module = m; sink_input_data.sink = u->master; pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream"); pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter"); pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss); pa_sink_input_new_data_set_channel_map(&sink_input_data, &map); pa_sink_input_new(&u->sink_input, m->core, &sink_input_data, PA_SINK_INPUT_DONT_MOVE); pa_sink_input_new_data_done(&sink_input_data); if (!u->sink_input) goto fail; u->sink_input->pop = sink_input_pop_cb; u->sink_input->process_rewind = sink_input_process_rewind_cb; u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb; u->sink_input->update_max_request = sink_input_update_max_request_cb; u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb; u->sink_input->kill = sink_input_kill_cb; u->sink_input->attach = sink_input_attach_cb; u->sink_input->detach = sink_input_detach_cb; u->sink_input->state_change = sink_input_state_change_cb; u->sink_input->may_move_to = sink_input_may_move_to_cb; u->sink_input->userdata = u; pa_sink_put(u->sink); pa_sink_input_put(u->sink_input); pa_modargs_free(ma); pa_xfree(use_default); return 0; fail: if (ma) pa_modargs_free(ma); pa_xfree(use_default); pa__done(m); return -1; } int pa__get_n_used(pa_module *m) { struct userdata *u; pa_assert(m); pa_assert_se(u = m->userdata); return pa_sink_linked_by(u->sink); } void pa__done(pa_module*m) { struct userdata *u; pa_assert(m); if (!(u = m->userdata)) return; if (u->sink) { pa_sink_unlink(u->sink); pa_sink_unref(u->sink); } if (u->sink_input) { pa_sink_input_unlink(u->sink_input); pa_sink_input_unref(u->sink_input); } if(u->conv_buffer.memblock) pa_memblock_unref(u->conv_buffer.memblock); if (u->rendered_q) pa_memblockq_free(u->rendered_q); fftwf_destroy_plan(u->inverse_plan); fftwf_destroy_plan(u->forward_plan); free(u->output_window); for(size_t c=0;cchannels;++c){ free(u->output_buffer[c]); free(u->overlap_accum[c]); free(u->input[c]); } free(u->output_buffer); free(u->overlap_accum); free(u->input); free(u->work_buffer); free(u->W); free(u->H); pa_xfree(u); }