/*** This file is part of PulseAudio. Copyright 2004-2008 Lennart Poettering PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. ***/ /* TODO: Some plugins cause latency, and some even report it by using a control out port. We don't currently use the latency information. */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "module-ladspa-sink-symdef.h" #include "ladspa.h" PA_MODULE_AUTHOR("Lennart Poettering"); PA_MODULE_DESCRIPTION(_("Virtual LADSPA sink")); PA_MODULE_VERSION(PACKAGE_VERSION); PA_MODULE_LOAD_ONCE(FALSE); PA_MODULE_USAGE( _("sink_name= " "sink_properties= " "master= " "format= " "rate= " "channels= " "channel_map= " "plugin= " "label= " "control= " "input_ladspaport_map= " "output_ladspaport_map= ")); #define MEMBLOCKQ_MAXLENGTH (16*1024*1024) /* PLEASE NOTICE: The PortAudio ports and the LADSPA ports are two different concepts. They are not related and where possible the names of the LADSPA port variables contains "ladspa" to avoid confusion */ struct userdata { pa_module *module; pa_sink *sink; pa_sink_input *sink_input; const LADSPA_Descriptor *descriptor; LADSPA_Handle handle[PA_CHANNELS_MAX]; unsigned long max_ladspaport_count, input_count, output_count, channels; LADSPA_Data **input, **output; size_t block_size; LADSPA_Data *control; /* This is a dummy buffer. Every port must be connected, but we don't care about control out ports. We connect them all to this single buffer. */ LADSPA_Data control_out; pa_memblockq *memblockq; pa_bool_t auto_desc; }; static const char* const valid_modargs[] = { "sink_name", "sink_properties", "master", "format", "rate", "channels", "channel_map", "plugin", "label", "control", "input_ladspaport_map", "output_ladspaport_map", NULL }; /* Called from I/O thread context */ static int sink_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SINK(o)->userdata; switch (code) { case PA_SINK_MESSAGE_GET_LATENCY: /* The sink is _put() before the sink input is, so let's * make sure we don't access it in that time. Also, the * sink input is first shut down, the sink second. */ if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) { *((pa_usec_t*) data) = 0; return 0; } *((pa_usec_t*) data) = /* Get the latency of the master sink */ pa_sink_get_latency_within_thread(u->sink_input->sink) + /* Add the latency internal to our sink input on top */ pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->sink_input->sink->sample_spec); return 0; } return pa_sink_process_msg(o, code, data, offset, chunk); } /* Called from main context */ static int sink_set_state_cb(pa_sink *s, pa_sink_state_t state) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(state) || !PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input))) return 0; pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED); return 0; } /* Called from I/O thread context */ static void sink_request_rewind_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) return; /* Just hand this one over to the master sink */ pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->memblockq), TRUE, FALSE, FALSE); } /* Called from I/O thread context */ static void sink_update_requested_latency_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) return; /* Just hand this one over to the master sink */ pa_sink_input_set_requested_latency_within_thread( u->sink_input, pa_sink_get_requested_latency_within_thread(s)); } /* Called from main context */ static void sink_set_volume_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(pa_sink_get_state(s)) || !PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input))) return; pa_sink_input_set_volume(u->sink_input, &s->real_volume, s->save_volume, TRUE); } /* Called from main context */ static void sink_set_mute_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(pa_sink_get_state(s)) || !PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input))) return; pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted); } /* Called from I/O thread context */ static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) { struct userdata *u; float *src, *dst; size_t fs; unsigned n, h, c; pa_memchunk tchunk; pa_sink_input_assert_ref(i); pa_assert(chunk); pa_assert_se(u = i->userdata); /* Hmm, process any rewind request that might be queued up */ pa_sink_process_rewind(u->sink, 0); while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) { pa_memchunk nchunk; pa_sink_render(u->sink, nbytes, &nchunk); pa_memblockq_push(u->memblockq, &nchunk); pa_memblock_unref(nchunk.memblock); } tchunk.length = PA_MIN(nbytes, tchunk.length); pa_assert(tchunk.length > 0); fs = pa_frame_size(&i->sample_spec); n = (unsigned) (PA_MIN(tchunk.length, u->block_size) / fs); pa_assert(n > 0); chunk->index = 0; chunk->length = n*fs; chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length); pa_memblockq_drop(u->memblockq, chunk->length); src = (float*) ((uint8_t*) pa_memblock_acquire(tchunk.memblock) + tchunk.index); dst = (float*) pa_memblock_acquire(chunk->memblock); for (h = 0; h < (u->channels / u->max_ladspaport_count); h++) { for (c = 0; c < u->input_count; c++) pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input[c], sizeof(float), src+ h*u->max_ladspaport_count + c, u->channels*sizeof(float), n); u->descriptor->run(u->handle[h], n); for (c = 0; c < u->output_count; c++) pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst + h*u->max_ladspaport_count + c, u->channels*sizeof(float), u->output[c], sizeof(float), n); } pa_memblock_release(tchunk.memblock); pa_memblock_release(chunk->memblock); pa_memblock_unref(tchunk.memblock); return 0; } /* Called from I/O thread context */ static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; size_t amount = 0; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (u->sink->thread_info.rewind_nbytes > 0) { size_t max_rewrite; max_rewrite = nbytes + pa_memblockq_get_length(u->memblockq); amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite); u->sink->thread_info.rewind_nbytes = 0; if (amount > 0) { unsigned c; pa_memblockq_seek(u->memblockq, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE); pa_log_debug("Resetting plugin"); /* Reset the plugin */ if (u->descriptor->deactivate) for (c = 0; c < (u->channels / u->max_ladspaport_count); c++) u->descriptor->deactivate(u->handle[c]); if (u->descriptor->activate) for (c = 0; c < (u->channels / u->max_ladspaport_count); c++) u->descriptor->activate(u->handle[c]); } } pa_sink_process_rewind(u->sink, amount); pa_memblockq_rewind(u->memblockq, nbytes); } /* Called from I/O thread context */ static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_memblockq_set_maxrewind(u->memblockq, nbytes); pa_sink_set_max_rewind_within_thread(u->sink, nbytes); } /* Called from I/O thread context */ static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_set_max_request_within_thread(u->sink, nbytes); } /* Called from I/O thread context */ static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); } /* Called from I/O thread context */ static void sink_input_update_sink_fixed_latency_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency); } /* Called from I/O thread context */ static void sink_input_detach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_detach_within_thread(u->sink); pa_sink_set_rtpoll(u->sink, NULL); } /* Called from I/O thread context */ static void sink_input_attach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_set_rtpoll(u->sink, i->sink->thread_info.rtpoll); pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency); pa_sink_set_max_request_within_thread(u->sink, pa_sink_input_get_max_request(i)); pa_sink_set_max_rewind_within_thread(u->sink, pa_sink_input_get_max_rewind(i)); pa_sink_attach_within_thread(u->sink); } /* Called from main context */ static void sink_input_kill_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); /* The order here matters! We first kill the sink input, followed * by the sink. That means the sink callbacks must be protected * against an unconnected sink input! */ pa_sink_input_unlink(u->sink_input); pa_sink_unlink(u->sink); pa_sink_input_unref(u->sink_input); u->sink_input = NULL; pa_sink_unref(u->sink); u->sink = NULL; pa_module_unload_request(u->module, TRUE); } /* Called from IO thread context */ static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); /* If we are added for the first time, ask for a rewinding so that * we are heard right-away. */ if (PA_SINK_INPUT_IS_LINKED(state) && i->thread_info.state == PA_SINK_INPUT_INIT) { pa_log_debug("Requesting rewind due to state change."); pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE); } } /* Called from main context */ static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); return u->sink != dest; } /* Called from main context */ static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (dest) { pa_sink_set_asyncmsgq(u->sink, dest->asyncmsgq); pa_sink_update_flags(u->sink, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY, dest->flags); } else pa_sink_set_asyncmsgq(u->sink, NULL); if (u->auto_desc && dest) { const char *z; pa_proplist *pl; pl = pa_proplist_new(); z = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_setf(pl, PA_PROP_DEVICE_DESCRIPTION, "LADSPA Plugin %s on %s", pa_proplist_gets(u->sink->proplist, "device.ladspa.name"), z ? z : dest->name); pa_sink_update_proplist(u->sink, PA_UPDATE_REPLACE, pl); pa_proplist_free(pl); } } /* Called from main context */ static void sink_input_volume_changed_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_volume_changed(u->sink, &i->volume); } /* Called from main context */ static void sink_input_mute_changed_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_mute_changed(u->sink, i->muted); } int pa__init(pa_module*m) { struct userdata *u; pa_sample_spec ss; pa_channel_map map; pa_modargs *ma; char *t; pa_sink *master; pa_sink_input_new_data sink_input_data; pa_sink_new_data sink_data; const char *plugin, *label, *input_ladspaport_map, *output_ladspaport_map; LADSPA_Descriptor_Function descriptor_func; unsigned long input_ladspaport[PA_CHANNELS_MAX], output_ladspaport[PA_CHANNELS_MAX]; const char *e, *cdata; const LADSPA_Descriptor *d; unsigned long p, h, j, n_control, c; pa_bool_t *use_default = NULL; pa_assert(m); pa_assert_cc(sizeof(LADSPA_Data) == sizeof(float)); if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log("Failed to parse module arguments."); goto fail; } if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) { pa_log("Master sink not found"); goto fail; } ss = master->sample_spec; ss.format = PA_SAMPLE_FLOAT32; map = master->channel_map; if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) { pa_log("Invalid sample format specification or channel map"); goto fail; } if (!(plugin = pa_modargs_get_value(ma, "plugin", NULL))) { pa_log("Missing LADSPA plugin name"); goto fail; } if (!(label = pa_modargs_get_value(ma, "label", NULL))) { pa_log("Missing LADSPA plugin label"); goto fail; } if (!(input_ladspaport_map = pa_modargs_get_value(ma, "input_ladspaport_map", NULL))) pa_log_debug("Using default input ladspa port mapping"); if (!(output_ladspaport_map = pa_modargs_get_value(ma, "output_ladspaport_map", NULL))) pa_log_debug("Using default output ladspa port mapping"); cdata = pa_modargs_get_value(ma, "control", NULL); u = pa_xnew0(struct userdata, 1); u->module = m; m->userdata = u; u->memblockq = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH, 0, pa_frame_size(&ss), 1, 1, 0, NULL); u->max_ladspaport_count = 1; /*to avoid division by zero etc. in pa__done when failing before this value has been set*/ u->channels = 0; u->input = NULL; u->output = NULL; if (!(e = getenv("LADSPA_PATH"))) e = LADSPA_PATH; /* FIXME: This is not exactly thread safe */ t = pa_xstrdup(lt_dlgetsearchpath()); lt_dlsetsearchpath(e); m->dl = lt_dlopenext(plugin); lt_dlsetsearchpath(t); pa_xfree(t); if (!m->dl) { pa_log("Failed to load LADSPA plugin: %s", lt_dlerror()); goto fail; } if (!(descriptor_func = (LADSPA_Descriptor_Function) pa_load_sym(m->dl, NULL, "ladspa_descriptor"))) { pa_log("LADSPA module lacks ladspa_descriptor() symbol."); goto fail; } for (j = 0;; j++) { if (!(d = descriptor_func(j))) { pa_log("Failed to find plugin label '%s' in plugin '%s'.", label, plugin); goto fail; } if (strcmp(d->Label, label) == 0) break; } u->descriptor = d; pa_log_debug("Module: %s", plugin); pa_log_debug("Label: %s", d->Label); pa_log_debug("Unique ID: %lu", d->UniqueID); pa_log_debug("Name: %s", d->Name); pa_log_debug("Maker: %s", d->Maker); pa_log_debug("Copyright: %s", d->Copyright); n_control = 0; u->channels = ss.channels; /* * Enumerate ladspa ports * Default mapping is in order given by the plugin */ for (p = 0; p < d->PortCount; p++) { if (LADSPA_IS_PORT_AUDIO(d->PortDescriptors[p])) { if (LADSPA_IS_PORT_INPUT(d->PortDescriptors[p])) { pa_log_debug("Port %lu is input: %s", p, d->PortNames[p]); input_ladspaport[u->input_count] = p; u->input_count++; } else if (LADSPA_IS_PORT_OUTPUT(d->PortDescriptors[p])) { pa_log_debug("Port %lu is output: %s", p, d->PortNames[p]); output_ladspaport[u->output_count] = p; u->output_count++; } } else if (LADSPA_IS_PORT_CONTROL(d->PortDescriptors[p]) && LADSPA_IS_PORT_INPUT(d->PortDescriptors[p])) { pa_log_debug("Port %lu is control: %s", p, d->PortNames[p]); n_control++; } else pa_log_debug("Ignored port %s", d->PortNames[p]); /* XXX: Has anyone ever seen an in-place plugin with non-equal number of input and output ports? */ /* Could be if the plugin is for up-mixing stereo to 5.1 channels */ /* Or if the plugin is down-mixing 5.1 to two channel stereo or binaural encoded signal */ if (u->input_count > u->max_ladspaport_count) u->max_ladspaport_count = u->input_count; else u->max_ladspaport_count = u->output_count; } if (u->channels % u->max_ladspaport_count) { pa_log("Cannot handle non-integral number of plugins required for given number of channels"); goto fail; } pa_log_debug("Will run %lu plugin instances", u->channels / u->max_ladspaport_count); /* Parse data for input ladspa port map */ if (input_ladspaport_map) { const char *state = NULL; char *pname; c = 0; while ((pname = pa_split(input_ladspaport_map, ",", &state))) { if (c == u->input_count) { pa_log("Too many ports in input ladspa port map"); goto fail; } for (p = 0; p < d->PortCount; p++) { if (strcmp(d->PortNames[p], pname) == 0) { if (LADSPA_IS_PORT_AUDIO(d->PortDescriptors[p]) && LADSPA_IS_PORT_INPUT(d->PortDescriptors[p])) { input_ladspaport[c] = p; } else { pa_log("Port %s is not an audio input ladspa port", pname); pa_xfree(pname); goto fail; } } } c++; pa_xfree(pname); } } /* Parse data for output port map */ if (output_ladspaport_map) { const char *state = NULL; char *pname; c = 0; while ((pname = pa_split(output_ladspaport_map, ",", &state))) { if (c == u->output_count) { pa_log("Too many ports in output ladspa port map"); goto fail; } for (p = 0; p < d->PortCount; p++) { if (strcmp(d->PortNames[p], pname) == 0) { if (LADSPA_IS_PORT_AUDIO(d->PortDescriptors[p]) && LADSPA_IS_PORT_OUTPUT(d->PortDescriptors[p])) { output_ladspaport[c] = p; } else { pa_log("Port %s is not an output ladspa port", pname); pa_xfree(pname); goto fail; } } } c++; pa_xfree(pname); } } u->block_size = pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss); /* Create buffers */ if (LADSPA_IS_INPLACE_BROKEN(d->Properties)) { u->input = (LADSPA_Data**) pa_xnew(LADSPA_Data*, (unsigned) u->input_count); for (c = 0; c < u->input_count; c++) u->input[c] = (LADSPA_Data*) pa_xnew(uint8_t, (unsigned) u->block_size); u->output = (LADSPA_Data**) pa_xnew(LADSPA_Data*, (unsigned) u->output_count); for (c = 0; c < u->output_count; c++) u->output[c] = (LADSPA_Data*) pa_xnew(uint8_t, (unsigned) u->block_size); } else { u->input = (LADSPA_Data**) pa_xnew(LADSPA_Data*, (unsigned) u->max_ladspaport_count); for (c = 0; c < u->max_ladspaport_count; c++) u->input[c] = (LADSPA_Data*) pa_xnew(uint8_t, (unsigned) u->block_size); u->output = u->input; } /* Initialize plugin instances */ for (h = 0; h < (u->channels / u->max_ladspaport_count); h++) { if (!(u->handle[h] = d->instantiate(d, ss.rate))) { pa_log("Failed to instantiate plugin %s with label %s", plugin, d->Label); goto fail; } for (c = 0; c < u->input_count; c++) d->connect_port(u->handle[h], input_ladspaport[c], u->input[c]); for (c = 0; c < u->output_count; c++) d->connect_port(u->handle[h], output_ladspaport[c], u->output[c]); } if (!cdata && n_control > 0) { pa_log("This plugin requires specification of %lu control parameters.", n_control); goto fail; } if (n_control > 0) { const char *state = NULL; char *k; u->control = pa_xnew(LADSPA_Data, (unsigned) n_control); use_default = pa_xnew(pa_bool_t, (unsigned) n_control); p = 0; while ((k = pa_split(cdata, ",", &state)) && p < n_control) { double f; if (*k == 0) { use_default[p++] = TRUE; pa_xfree(k); continue; } if (pa_atod(k, &f) < 0) { pa_log("Failed to parse control value '%s'", k); pa_xfree(k); goto fail; } pa_xfree(k); use_default[p] = FALSE; u->control[p++] = (LADSPA_Data) f; } /* The previous loop doesn't take the last control value into account if it is left empty, so we do it here. */ if (*cdata == 0 || cdata[strlen(cdata) - 1] == ',') { if (p < n_control) use_default[p] = TRUE; p++; } if (p > n_control || k) { pa_log("Too many control values passed, %lu expected.", n_control); pa_xfree(k); goto fail; } if (p < n_control) { pa_log("Not enough control values passed, %lu expected, %lu passed.", n_control, p); goto fail; } h = 0; for (p = 0; p < d->PortCount; p++) { LADSPA_PortRangeHintDescriptor hint = d->PortRangeHints[p].HintDescriptor; if (!LADSPA_IS_PORT_CONTROL(d->PortDescriptors[p])) continue; if (LADSPA_IS_PORT_OUTPUT(d->PortDescriptors[p])) { for (c = 0; c < (u->channels / u->max_ladspaport_count); c++) d->connect_port(u->handle[c], p, &u->control_out); continue; } pa_assert(h < n_control); if (use_default[h]) { LADSPA_Data lower, upper; if (!LADSPA_IS_HINT_HAS_DEFAULT(hint)) { pa_log("Control port value left empty but plugin defines no default."); goto fail; } lower = d->PortRangeHints[p].LowerBound; upper = d->PortRangeHints[p].UpperBound; if (LADSPA_IS_HINT_SAMPLE_RATE(hint)) { lower *= (LADSPA_Data) ss.rate; upper *= (LADSPA_Data) ss.rate; } switch (hint & LADSPA_HINT_DEFAULT_MASK) { case LADSPA_HINT_DEFAULT_MINIMUM: u->control[h] = lower; break; case LADSPA_HINT_DEFAULT_MAXIMUM: u->control[h] = upper; break; case LADSPA_HINT_DEFAULT_LOW: if (LADSPA_IS_HINT_LOGARITHMIC(hint)) u->control[h] = (LADSPA_Data) exp(log(lower) * 0.75 + log(upper) * 0.25); else u->control[h] = (LADSPA_Data) (lower * 0.75 + upper * 0.25); break; case LADSPA_HINT_DEFAULT_MIDDLE: if (LADSPA_IS_HINT_LOGARITHMIC(hint)) u->control[h] = (LADSPA_Data) exp(log(lower) * 0.5 + log(upper) * 0.5); else u->control[h] = (LADSPA_Data) (lower * 0.5 + upper * 0.5); break; case LADSPA_HINT_DEFAULT_HIGH: if (LADSPA_IS_HINT_LOGARITHMIC(hint)) u->control[h] = (LADSPA_Data) exp(log(lower) * 0.25 + log(upper) * 0.75); else u->control[h] = (LADSPA_Data) (lower * 0.25 + upper * 0.75); break; case LADSPA_HINT_DEFAULT_0: u->control[h] = 0; break; case LADSPA_HINT_DEFAULT_1: u->control[h] = 1; break; case LADSPA_HINT_DEFAULT_100: u->control[h] = 100; break; case LADSPA_HINT_DEFAULT_440: u->control[h] = 440; break; default: pa_assert_not_reached(); } } if (LADSPA_IS_HINT_INTEGER(hint)) u->control[h] = roundf(u->control[h]); pa_log_debug("Binding %f to port %s", u->control[h], d->PortNames[p]); for (c = 0; c < (u->channels / u->max_ladspaport_count); c++) d->connect_port(u->handle[c], p, &u->control[h]); h++; } pa_assert(h == n_control); } if (d->activate) for (c = 0; c < (u->channels / u->max_ladspaport_count); c++) d->activate(u->handle[c]); /* Create sink */ pa_sink_new_data_init(&sink_data); sink_data.driver = __FILE__; sink_data.module = m; if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL)))) sink_data.name = pa_sprintf_malloc("%s.ladspa", master->name); pa_sink_new_data_set_sample_spec(&sink_data, &ss); pa_sink_new_data_set_channel_map(&sink_data, &map); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter"); pa_proplist_sets(sink_data.proplist, "device.ladspa.module", plugin); pa_proplist_sets(sink_data.proplist, "device.ladspa.label", d->Label); pa_proplist_sets(sink_data.proplist, "device.ladspa.name", d->Name); pa_proplist_sets(sink_data.proplist, "device.ladspa.maker", d->Maker); pa_proplist_sets(sink_data.proplist, "device.ladspa.copyright", d->Copyright); pa_proplist_setf(sink_data.proplist, "device.ladspa.unique_id", "%lu", (unsigned long) d->UniqueID); if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) { pa_log("Invalid properties"); pa_sink_new_data_done(&sink_data); goto fail; } if ((u->auto_desc = !pa_proplist_contains(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION))) { const char *z; z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "LADSPA Plugin %s on %s", d->Name, z ? z : master->name); } u->sink = pa_sink_new(m->core, &sink_data, PA_SINK_HW_MUTE_CTRL|PA_SINK_HW_VOLUME_CTRL|PA_SINK_DECIBEL_VOLUME| (master->flags & (PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY))); pa_sink_new_data_done(&sink_data); if (!u->sink) { pa_log("Failed to create sink."); goto fail; } u->sink->parent.process_msg = sink_process_msg_cb; u->sink->set_state = sink_set_state_cb; u->sink->update_requested_latency = sink_update_requested_latency_cb; u->sink->request_rewind = sink_request_rewind_cb; u->sink->set_volume = sink_set_volume_cb; u->sink->set_mute = sink_set_mute_cb; u->sink->userdata = u; pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq); /* Create sink input */ pa_sink_input_new_data_init(&sink_input_data); sink_input_data.driver = __FILE__; sink_input_data.module = m; sink_input_data.sink = master; sink_input_data.origin_sink = u->sink; pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "LADSPA Stream"); pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter"); pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss); pa_sink_input_new_data_set_channel_map(&sink_input_data, &map); pa_sink_input_new(&u->sink_input, m->core, &sink_input_data); pa_sink_input_new_data_done(&sink_input_data); if (!u->sink_input) goto fail; u->sink_input->pop = sink_input_pop_cb; u->sink_input->process_rewind = sink_input_process_rewind_cb; u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb; u->sink_input->update_max_request = sink_input_update_max_request_cb; u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb; u->sink_input->update_sink_fixed_latency = sink_input_update_sink_fixed_latency_cb; u->sink_input->kill = sink_input_kill_cb; u->sink_input->attach = sink_input_attach_cb; u->sink_input->detach = sink_input_detach_cb; u->sink_input->state_change = sink_input_state_change_cb; u->sink_input->may_move_to = sink_input_may_move_to_cb; u->sink_input->moving = sink_input_moving_cb; u->sink_input->volume_changed = sink_input_volume_changed_cb; u->sink_input->mute_changed = sink_input_mute_changed_cb; u->sink_input->userdata = u; u->sink->input_to_master = u->sink_input; pa_sink_put(u->sink); pa_sink_input_put(u->sink_input); pa_modargs_free(ma); pa_xfree(use_default); return 0; fail: if (ma) pa_modargs_free(ma); pa_xfree(use_default); pa__done(m); return -1; } int pa__get_n_used(pa_module *m) { struct userdata *u; pa_assert(m); pa_assert_se(u = m->userdata); return pa_sink_linked_by(u->sink); } void pa__done(pa_module*m) { struct userdata *u; unsigned c; pa_assert(m); if (!(u = m->userdata)) return; /* See comments in sink_input_kill_cb() above regarding * destruction order! */ if (u->sink_input) pa_sink_input_unlink(u->sink_input); if (u->sink) pa_sink_unlink(u->sink); if (u->sink_input) pa_sink_input_unref(u->sink_input); if (u->sink) pa_sink_unref(u->sink); for (c = 0; c < (u->channels / u->max_ladspaport_count); c++) { if (u->handle[c]) { if (u->descriptor->deactivate) u->descriptor->deactivate(u->handle[c]); u->descriptor->cleanup(u->handle[c]); } } if (u->output == u->input) { if (u->input != NULL) { for (c = 0; c < u->max_ladspaport_count; c++) pa_xfree(u->input[c]); pa_xfree(u->input); } } else { if (u->input != NULL) { for (c = 0; c < u->input_count; c++) pa_xfree(u->input[c]); pa_xfree(u->input); } if (u->output != NULL) { for (c = 0; c < u->output_count; c++) pa_xfree(u->output[c]); pa_xfree(u->output); } } if (u->memblockq) pa_memblockq_free(u->memblockq); pa_xfree(u->control); pa_xfree(u); }