/* $Id$ */ /*** This file is part of polypaudio. polypaudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. polypaudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with polypaudio; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "module-waveout-symdef.h" PA_MODULE_AUTHOR("Pierre Ossman") PA_MODULE_DESCRIPTION("Windows waveOut Sink/Source") PA_MODULE_VERSION(PACKAGE_VERSION) PA_MODULE_USAGE("sink_name= source_name= record= playback= format= channels= rate= fragments= fragment_size=") #define DEFAULT_SINK_NAME "wave_output" #define DEFAULT_SOURCE_NAME "wave_input" #define WAVEOUT_MAX_VOLUME 0xFFFF struct userdata { pa_sink *sink; pa_source *source; pa_core *core; pa_time_event *event; pa_defer_event *defer; pa_usec_t poll_timeout; uint32_t fragments, fragment_size; uint32_t free_ofrags, free_ifrags; DWORD written_bytes; int cur_ohdr, cur_ihdr; unsigned int oremain; WAVEHDR *ohdrs, *ihdrs; pa_memchunk silence; HWAVEOUT hwo; HWAVEIN hwi; pa_module *module; CRITICAL_SECTION crit; }; static const char* const valid_modargs[] = { "sink_name", "source_name", "record", "playback", "fragments", "fragment_size", "format", "rate", "channels", NULL }; static void update_usage(struct userdata *u) { pa_module_set_used(u->module, (u->sink ? pa_idxset_size(u->sink->inputs) : 0) + (u->sink ? pa_idxset_size(u->sink->monitor_source->outputs) : 0) + (u->source ? pa_idxset_size(u->source->outputs) : 0)); } static void do_write(struct userdata *u) { uint32_t free_frags, remain; pa_memchunk memchunk, *cur_chunk; WAVEHDR *hdr; MMRESULT res; if (!u->sink) return; EnterCriticalSection(&u->crit); free_frags = u->free_ofrags; u->free_ofrags = 0; LeaveCriticalSection(&u->crit); if (free_frags == u->fragments) pa_log_debug(__FILE__": WaveOut underflow!"); while (free_frags) { hdr = &u->ohdrs[u->cur_ohdr]; if (hdr->dwFlags & WHDR_PREPARED) waveOutUnprepareHeader(u->hwo, hdr, sizeof(WAVEHDR)); remain = u->oremain; while (remain) { cur_chunk = &memchunk; if (pa_sink_render(u->sink, remain, cur_chunk) < 0) { /* * Don't fill with silence unless we're getting close to * underflowing. */ if (free_frags > u->fragments/2) cur_chunk = &u->silence; else { EnterCriticalSection(&u->crit); u->free_ofrags += free_frags; LeaveCriticalSection(&u->crit); u->oremain = remain; return; } } assert(cur_chunk->memblock); assert(cur_chunk->memblock->data); assert(cur_chunk->length); memcpy(hdr->lpData + u->fragment_size - remain, (char*)cur_chunk->memblock->data + cur_chunk->index, (cur_chunk->length < remain)?cur_chunk->length:remain); remain -= (cur_chunk->length < remain)?cur_chunk->length:remain; if (cur_chunk != &u->silence) { pa_memblock_unref(cur_chunk->memblock); cur_chunk->memblock = NULL; } } res = waveOutPrepareHeader(u->hwo, hdr, sizeof(WAVEHDR)); if (res != MMSYSERR_NOERROR) { pa_log_error(__FILE__ ": ERROR: Unable to prepare waveOut block: %d", res); } res = waveOutWrite(u->hwo, hdr, sizeof(WAVEHDR)); if (res != MMSYSERR_NOERROR) { pa_log_error(__FILE__ ": ERROR: Unable to write waveOut block: %d", res); } u->written_bytes += u->fragment_size; free_frags--; u->cur_ohdr++; u->cur_ohdr %= u->fragments; u->oremain = u->fragment_size; } } static void do_read(struct userdata *u) { uint32_t free_frags; pa_memchunk memchunk; WAVEHDR *hdr; MMRESULT res; if (!u->source) return; EnterCriticalSection(&u->crit); free_frags = u->free_ifrags; u->free_ifrags = 0; LeaveCriticalSection(&u->crit); if (free_frags == u->fragments) pa_log_debug(__FILE__": WaveIn overflow!"); while (free_frags) { hdr = &u->ihdrs[u->cur_ihdr]; if (hdr->dwFlags & WHDR_PREPARED) waveInUnprepareHeader(u->hwi, hdr, sizeof(WAVEHDR)); if (hdr->dwBytesRecorded) { memchunk.memblock = pa_memblock_new(hdr->dwBytesRecorded, u->core->memblock_stat); assert(memchunk.memblock); memcpy((char*)memchunk.memblock->data, hdr->lpData, hdr->dwBytesRecorded); memchunk.length = memchunk.memblock->length = hdr->dwBytesRecorded; memchunk.index = 0; pa_source_post(u->source, &memchunk); pa_memblock_unref(memchunk.memblock); } res = waveInPrepareHeader(u->hwi, hdr, sizeof(WAVEHDR)); if (res != MMSYSERR_NOERROR) { pa_log_error(__FILE__ ": ERROR: Unable to prepare waveIn block: %d", res); } res = waveInAddBuffer(u->hwi, hdr, sizeof(WAVEHDR)); if (res != MMSYSERR_NOERROR) { pa_log_error(__FILE__ ": ERROR: Unable to add waveIn block: %d", res); } free_frags--; u->cur_ihdr++; u->cur_ihdr %= u->fragments; } } static void poll_cb(pa_mainloop_api*a, pa_time_event *e, const struct timeval *tv, void *userdata) { struct userdata *u = userdata; struct timeval ntv; assert(u); update_usage(u); do_write(u); do_read(u); pa_gettimeofday(&ntv); pa_timeval_add(&ntv, u->poll_timeout); a->time_restart(e, &ntv); } static void defer_cb(pa_mainloop_api*a, pa_defer_event *e, void *userdata) { struct userdata *u = userdata; assert(u); a->defer_enable(e, 0); do_write(u); do_read(u); } static void CALLBACK chunk_done_cb(HWAVEOUT hwo, UINT msg, DWORD_PTR inst, DWORD param1, DWORD param2) { struct userdata *u = (struct userdata *)inst; if (msg != WOM_DONE) return; EnterCriticalSection(&u->crit); u->free_ofrags++; assert(u->free_ofrags <= u->fragments); LeaveCriticalSection(&u->crit); } static void CALLBACK chunk_ready_cb(HWAVEIN hwi, UINT msg, DWORD_PTR inst, DWORD param1, DWORD param2) { struct userdata *u = (struct userdata *)inst; if (msg != WIM_DATA) return; EnterCriticalSection(&u->crit); u->free_ifrags++; assert(u->free_ifrags <= u->fragments); LeaveCriticalSection(&u->crit); } static pa_usec_t sink_get_latency_cb(pa_sink *s) { struct userdata *u = s->userdata; uint32_t free_frags; MMTIME mmt; assert(s && u && u->sink); memset(&mmt, 0, sizeof(mmt)); mmt.wType = TIME_BYTES; if (waveOutGetPosition(u->hwo, &mmt, sizeof(mmt)) == MMSYSERR_NOERROR) return pa_bytes_to_usec(u->written_bytes - mmt.u.cb, &s->sample_spec); else { EnterCriticalSection(&u->crit); free_frags = u->free_ofrags; LeaveCriticalSection(&u->crit); return pa_bytes_to_usec((u->fragments - free_frags) * u->fragment_size, &s->sample_spec); } } static pa_usec_t source_get_latency_cb(pa_source *s) { pa_usec_t r = 0; struct userdata *u = s->userdata; uint32_t free_frags; assert(s && u && u->sink); EnterCriticalSection(&u->crit); free_frags = u->free_ifrags; LeaveCriticalSection(&u->crit); r += pa_bytes_to_usec((free_frags + 1) * u->fragment_size, &s->sample_spec); return r; } static void notify_sink_cb(pa_sink *s) { struct userdata *u = s->userdata; assert(u); u->core->mainloop->defer_enable(u->defer, 1); } static void notify_source_cb(pa_source *s) { struct userdata *u = s->userdata; assert(u); u->core->mainloop->defer_enable(u->defer, 1); } static int sink_get_hw_volume_cb(pa_sink *s) { struct userdata *u = s->userdata; DWORD vol; pa_volume_t left, right; if (waveOutGetVolume(u->hwo, &vol) != MMSYSERR_NOERROR) return -1; left = (vol & 0xFFFF) * PA_VOLUME_NORM / WAVEOUT_MAX_VOLUME; right = ((vol >> 16) & 0xFFFF) * PA_VOLUME_NORM / WAVEOUT_MAX_VOLUME; /* Windows supports > 2 channels, except for volume control */ if (s->hw_volume.channels > 2) pa_cvolume_set(&s->hw_volume, s->hw_volume.channels, (left + right)/2); s->hw_volume.values[0] = left; if (s->hw_volume.channels > 1) s->hw_volume.values[1] = right; return 0; } static int sink_set_hw_volume_cb(pa_sink *s) { struct userdata *u = s->userdata; DWORD vol; vol = s->hw_volume.values[0] * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM; if (s->hw_volume.channels > 1) vol |= (s->hw_volume.values[0] * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM) << 16; if (waveOutSetVolume(u->hwo, vol) != MMSYSERR_NOERROR) return -1; return 0; } static int ss_to_waveformat(pa_sample_spec *ss, LPWAVEFORMATEX wf) { wf->wFormatTag = WAVE_FORMAT_PCM; if (ss->channels > 2) { pa_log_error(__FILE__": ERROR: More than two channels not supported."); return -1; } wf->nChannels = ss->channels; switch (ss->rate) { case 8000: case 11025: case 22005: case 44100: break; default: pa_log_error(__FILE__": ERROR: Unsupported sample rate."); return -1; } wf->nSamplesPerSec = ss->rate; if (ss->format == PA_SAMPLE_U8) wf->wBitsPerSample = 8; else if (ss->format == PA_SAMPLE_S16NE) wf->wBitsPerSample = 16; else { pa_log_error(__FILE__": ERROR: Unsupported sample format."); return -1; } wf->nBlockAlign = wf->nChannels * wf->wBitsPerSample/8; wf->nAvgBytesPerSec = wf->nSamplesPerSec * wf->nBlockAlign; wf->cbSize = 0; return 0; } int pa__init(pa_core *c, pa_module*m) { struct userdata *u = NULL; HWAVEOUT hwo = INVALID_HANDLE_VALUE; HWAVEIN hwi = INVALID_HANDLE_VALUE; WAVEFORMATEX wf; int nfrags, frag_size; int record = 1, playback = 1; pa_sample_spec ss; pa_modargs *ma = NULL; unsigned int i; struct timeval tv; assert(c && m); if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log(__FILE__": failed to parse module arguments."); goto fail; } if (pa_modargs_get_value_boolean(ma, "record", &record) < 0 || pa_modargs_get_value_boolean(ma, "playback", &playback) < 0) { pa_log(__FILE__": record= and playback= expect boolean argument."); goto fail; } if (!playback && !record) { pa_log(__FILE__": neither playback nor record enabled for device."); goto fail; } nfrags = 5; frag_size = 8192; if (pa_modargs_get_value_s32(ma, "fragments", &nfrags) < 0 || pa_modargs_get_value_s32(ma, "fragment_size", &frag_size) < 0) { pa_log(__FILE__": failed to parse fragments arguments"); goto fail; } ss = c->default_sample_spec; if (pa_modargs_get_sample_spec(ma, &ss) < 0) { pa_log(__FILE__": failed to parse sample specification"); goto fail; } if (ss_to_waveformat(&ss, &wf) < 0) goto fail; u = pa_xmalloc(sizeof(struct userdata)); if (record) { if (waveInOpen(&hwi, WAVE_MAPPER, &wf, (DWORD_PTR)chunk_ready_cb, (DWORD_PTR)u, CALLBACK_FUNCTION) != MMSYSERR_NOERROR) goto fail; if (waveInStart(hwi) != MMSYSERR_NOERROR) goto fail; pa_log_debug(__FILE__": Opened waveIn subsystem."); } if (playback) { if (waveOutOpen(&hwo, WAVE_MAPPER, &wf, (DWORD_PTR)chunk_done_cb, (DWORD_PTR)u, CALLBACK_FUNCTION) != MMSYSERR_NOERROR) goto fail; pa_log_debug(__FILE__": Opened waveOut subsystem."); } InitializeCriticalSection(&u->crit); if (hwi != INVALID_HANDLE_VALUE) { u->source = pa_source_new(c, __FILE__, pa_modargs_get_value(ma, "source_name", DEFAULT_SOURCE_NAME), 0, &ss, NULL); assert(u->source); u->source->userdata = u; u->source->notify = notify_source_cb; u->source->get_latency = source_get_latency_cb; pa_source_set_owner(u->source, m); u->source->description = pa_sprintf_malloc("Windows waveIn PCM"); } else u->source = NULL; if (hwo != INVALID_HANDLE_VALUE) { u->sink = pa_sink_new(c, __FILE__, pa_modargs_get_value(ma, "sink_name", DEFAULT_SINK_NAME), 0, &ss, NULL); assert(u->sink); u->sink->notify = notify_sink_cb; u->sink->get_latency = sink_get_latency_cb; u->sink->get_hw_volume = sink_get_hw_volume_cb; u->sink->set_hw_volume = sink_set_hw_volume_cb; u->sink->userdata = u; pa_sink_set_owner(u->sink, m); u->sink->description = pa_sprintf_malloc("Windows waveOut PCM"); } else u->sink = NULL; assert(u->source || u->sink); u->core = c; u->hwi = hwi; u->hwo = hwo; u->fragments = nfrags; u->free_ifrags = u->fragments; u->free_ofrags = u->fragments; u->fragment_size = frag_size - (frag_size % pa_frame_size(&ss)); u->written_bytes = 0; u->oremain = u->fragment_size; u->poll_timeout = pa_bytes_to_usec(u->fragments * u->fragment_size / 10, &ss); pa_gettimeofday(&tv); pa_timeval_add(&tv, u->poll_timeout); u->event = c->mainloop->time_new(c->mainloop, &tv, poll_cb, u); assert(u->event); u->defer = c->mainloop->defer_new(c->mainloop, defer_cb, u); assert(u->defer); c->mainloop->defer_enable(u->defer, 0); u->cur_ihdr = 0; u->cur_ohdr = 0; u->ihdrs = pa_xmalloc0(sizeof(WAVEHDR) * u->fragments); assert(u->ihdrs); u->ohdrs = pa_xmalloc0(sizeof(WAVEHDR) * u->fragments); assert(u->ohdrs); for (i = 0;i < u->fragments;i++) { u->ihdrs[i].dwBufferLength = u->fragment_size; u->ohdrs[i].dwBufferLength = u->fragment_size; u->ihdrs[i].lpData = pa_xmalloc(u->fragment_size); assert(u->ihdrs); u->ohdrs[i].lpData = pa_xmalloc(u->fragment_size); assert(u->ohdrs); } u->silence.length = u->fragment_size; u->silence.memblock = pa_memblock_new(u->silence.length, u->core->memblock_stat); assert(u->silence.memblock); pa_silence_memblock(u->silence.memblock, &ss); u->silence.index = 0; u->module = m; m->userdata = u; pa_modargs_free(ma); /* Read mixer settings */ if (u->sink) sink_get_hw_volume_cb(u->sink); return 0; fail: if (hwi != INVALID_HANDLE_VALUE) waveInClose(hwi); if (hwo != INVALID_HANDLE_VALUE) waveOutClose(hwo); if (u) pa_xfree(u); if (ma) pa_modargs_free(ma); return -1; } void pa__done(pa_core *c, pa_module*m) { struct userdata *u; unsigned int i; assert(c && m); if (!(u = m->userdata)) return; if (u->event) c->mainloop->time_free(u->event); if (u->defer) c->mainloop->defer_free(u->defer); if (u->sink) { pa_sink_disconnect(u->sink); pa_sink_unref(u->sink); } if (u->source) { pa_source_disconnect(u->source); pa_source_unref(u->source); } if (u->hwi != INVALID_HANDLE_VALUE) { waveInReset(u->hwi); waveInClose(u->hwi); } if (u->hwo != INVALID_HANDLE_VALUE) { waveOutReset(u->hwo); waveOutClose(u->hwo); } for (i = 0;i < u->fragments;i++) { pa_xfree(u->ihdrs[i].lpData); pa_xfree(u->ohdrs[i].lpData); } pa_xfree(u->ihdrs); pa_xfree(u->ohdrs); DeleteCriticalSection(&u->crit); pa_xfree(u); }