#ifndef foostreamhfoo #define foostreamhfoo /* $Id$ */ /*** This file is part of PulseAudio. PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. ***/ #include #include #include #include #include #include #include /** \page streams Audio Streams * * \section overv_sec Overview * * Audio streams form the central functionality of the sound server. Data is * routed, converted and mixed from several sources before it is passed along * to a final output. Currently, there are three forms of audio streams: * * \li Playback streams - Data flows from the client to the server. * \li Record streams - Data flows from the server to the client. * \li Upload streams - Similar to playback streams, but the data is stored in * the sample cache. See \ref scache for more information * about controlling the sample cache. * * \section create_sec Creating * * To access a stream, a pa_stream object must be created using * pa_stream_new(). At this point the audio sample format and mapping of * channels must be specified. See \ref sample and \ref channelmap for more * information about those structures. * * This first step will only create a client-side object, representing the * stream. To use the stream, a server-side object must be created and * associated with the local object. Depending on which type of stream is * desired, a different function is needed: * * \li Playback stream - pa_stream_connect_playback() * \li Record stream - pa_stream_connect_record() * \li Upload stream - pa_stream_connect_upload() (see \ref scache) * * Similar to how connections are done in contexts, connecting a stream will * not generate a pa_operation object. Also like contexts, the application * should register a state change callback, using * pa_stream_set_state_callback(), and wait for the stream to enter an active * state. * * \subsection bufattr_subsec Buffer Attributes * * Playback and record streams always have a server side buffer as * part of the data flow. The size of this buffer strikes a * compromise between low latency and sensitivity for buffer * overflows/underruns. * * The buffer metrics may be controlled by the application. They are * described with a pa_buffer_attr structure which contains a number * of fields: * * \li maxlength - The absolute maximum number of bytes that can be stored in * the buffer. If this value is exceeded then data will be * lost. * \li tlength - The target length of a playback buffer. The server will only * send requests for more data as long as the buffer has less * than this number of bytes of data. * \li prebuf - Number of bytes that need to be in the buffer before * playback will commence. Start of playback can be forced using * pa_stream_trigger() even though the prebuffer size hasn't been * reached. If a buffer underrun occurs, this prebuffering will be * again enabled. If the playback shall never stop in case of a buffer * underrun, this value should be set to 0. In that case the read * index of the output buffer overtakes the write index, and hence the * fill level of the buffer is negative. * \li minreq - Minimum free number of the bytes in the playback buffer before * the server will request more data. * \li fragsize - Maximum number of bytes that the server will push in one * chunk for record streams. * * The server side playback buffers are indexed by a write and a read * index. The application writes to the write index and the sound * device reads from the read index. The read index is increased * monotonically, while the write index may be freely controlled by * the application. Substracting the read index from the write index * will give you the current fill level of the buffer. The read/write * indexes are 64bit values and measured in bytes, they will never * wrap. The current read/write index may be queried using * pa_stream_get_timing_info() (see below for more information). In * case of a buffer underrun the read index is equal or larger than * the write index. Unless the prebuf value is 0, PulseAudio will * temporarily pause playback in such a case, and wait until the * buffer is filled up to prebuf bytes again. If prebuf is 0, the * read index may be larger than the write index, in which case * silence is played. If the application writes data to indexes lower * than the read index, the data is immediately lost. * * \section transfer_sec Transferring Data * * Once the stream is up, data can start flowing between the client and the * server. Two different access models can be used to transfer the data: * * \li Asynchronous - The application register a callback using * pa_stream_set_write_callback() and * pa_stream_set_read_callback() to receive notifications * that data can either be written or read. * \li Polled - Query the library for available data/space using * pa_stream_writable_size() and pa_stream_readable_size() and * transfer data as needed. The sizes are stored locally, in the * client end, so there is no delay when reading them. * * It is also possible to mix the two models freely. * * Once there is data/space available, it can be transferred using either * pa_stream_write() for playback, or pa_stream_peek() / pa_stream_drop() for * record. Make sure you do not overflow the playback buffers as data will be * dropped. * * \section bufctl_sec Buffer Control * * The transfer buffers can be controlled through a number of operations: * * \li pa_stream_cork() - Start or stop the playback or recording. * \li pa_stream_trigger() - Start playback immediatly and do not wait for * the buffer to fill up to the set trigger level. * \li pa_stream_prebuf() - Reenable the playback trigger level. * \li pa_stream_drain() - Wait for the playback buffer to go empty. Will * return a pa_operation object that will indicate when * the buffer is completely drained. * \li pa_stream_flush() - Drop all data from the playback buffer and do not * wait for it to finish playing. * * \section seek_modes Seeking in the Playback Buffer * * A client application may freely seek in the playback buffer. To * accomplish that the pa_stream_write() function takes a seek mode * and an offset argument. The seek mode is one of: * * \li PA_SEEK_RELATIVE - seek relative to the current write index * \li PA_SEEK_ABSOLUTE - seek relative to the beginning of the playback buffer, (i.e. the first that was ever played in the stream) * \li PA_SEEK_RELATIVE_ON_READ - seek relative to the current read index. Use this to write data to the output buffer that should be played as soon as possible * \li PA_SEEK_RELATIVE_END - seek relative to the last byte ever written. * * If an application just wants to append some data to the output * buffer, PA_SEEK_RELATIVE and an offset of 0 should be used. * * After a call to pa_stream_write() the write index will be left at * the position right after the last byte of the written data. * * \section latency_sec Latency * * A major problem with networked audio is the increased latency caused by * the network. To remedy this, PulseAudio supports an advanced system of * monitoring the current latency. * * To get the raw data needed to calculate latencies, call * pa_stream_get_timing_info(). This will give you a pa_timing_info * structure that contains everything that is known about the server * side buffer transport delays and the backend active in the * server. (Besides other things it contains the write and read index * values mentioned above.) * * This structure is updated every time a * pa_stream_update_timing_info() operation is executed. (i.e. before * the first call to this function the timing information structure is * not available!) Since it is a lot of work to keep this structure * up-to-date manually, PulseAudio can do that automatically for you: * if PA_STREAM_AUTO_TIMING_UPDATE is passed when connecting the * stream PulseAudio will automatically update the structure every * 100ms and every time a function is called that might invalidate the * previously known timing data (such as pa_stream_write() or * pa_stream_flush()). Please note however, that there always is a * short time window when the data in the timing information structure * is out-of-date. PulseAudio tries to mark these situations by * setting the write_index_corrupt and read_index_corrupt fields * accordingly. * * The raw timing data in the pa_timing_info structure is usually hard * to deal with. Therefore a more simplistic interface is available: * you can call pa_stream_get_time() or pa_stream_get_latency(). The * former will return the current playback time of the hardware since * the stream has been started. The latter returns the time a sample * that you write now takes to be played by the hardware. These two * functions base their calculations on the same data that is returned * by pa_stream_get_timing_info(). Hence the same rules for keeping * the timing data up-to-date apply here. In case the write or read * index is corrupted, these two functions will fail with * PA_ERR_NODATA set. * * Since updating the timing info structure usually requires a full * network round trip and some applications monitor the timing very * often PulseAudio offers a timing interpolation system. If * PA_STREAM_INTERPOLATE_TIMING is passed when connecting the stream, * pa_stream_get_time() and pa_stream_get_latency() will try to * interpolate the current playback time/latency by estimating the * number of samples that have been played back by the hardware since * the last regular timing update. It is espcially useful to combine * this option with PA_STREAM_AUTO_TIMING_UPDATE, which will enable * you to monitor the current playback time/latency very precisely and * very frequently without requiring a network round trip every time. * * \section flow_sec Overflow and underflow * * Even with the best precautions, buffers will sometime over - or * underflow. To handle this gracefully, the application can be * notified when this happens. Callbacks are registered using * pa_stream_set_overflow_callback() and * pa_stream_set_underflow_callback(). * * \section sync_streams Sychronizing Multiple Playback Streams * * PulseAudio allows applications to fully synchronize multiple * playback streams that are connected to the same output device. That * means the streams will always be played back sample-by-sample * synchronously. If stream operations like pa_stream_cork() are * issued on one of the synchronized streams, they are simultaneously * issued on the others. * * To synchronize a stream to another, just pass the "master" stream * as last argument to pa_stream_connect_playack(). To make sure that * the freshly created stream doesn't start playback right-away, make * sure to pass PA_STREAM_START_CORKED and - after all streams have * been created - uncork them all with a single call to * pa_stream_cork() for the master stream. * * To make sure that a particular stream doesn't stop to play when a * server side buffer underrun happens on it while the other * synchronized streams continue playing and hence deviate you need to * pass a "prebuf" pa_buffer_attr of 0 when connecting it. * * \section disc_sec Disconnecting * * When a stream has served is purpose it must be disconnected with * pa_stream_disconnect(). If you only unreference it, then it will live on * and eat resources both locally and on the server until you disconnect the * context. * */ /** \file * Audio streams for input, output and sample upload */ PA_C_DECL_BEGIN /** An opaque stream for playback or recording */ typedef struct pa_stream pa_stream; /** A generic callback for operation completion */ typedef void (*pa_stream_success_cb_t) (pa_stream*s, int success, void *userdata); /** A generic request callback */ typedef void (*pa_stream_request_cb_t)(pa_stream *p, size_t length, void *userdata); /** A generic notification callback */ typedef void (*pa_stream_notify_cb_t)(pa_stream *p, void *userdata); /** Create a new, unconnected stream with the specified name and sample type */ pa_stream* pa_stream_new( pa_context *c /**< The context to create this stream in */, const char *name /**< A name for this stream */, const pa_sample_spec *ss /**< The desired sample format */, const pa_channel_map *map /**< The desired channel map, or NULL for default */); /** Decrease the reference counter by one */ void pa_stream_unref(pa_stream *s); /** Increase the reference counter by one */ pa_stream *pa_stream_ref(pa_stream *s); /** Return the current state of the stream */ pa_stream_state_t pa_stream_get_state(pa_stream *p); /** Return the context this stream is attached to */ pa_context* pa_stream_get_context(pa_stream *p); /** Return the device (sink input or source output) index this stream is connected to */ uint32_t pa_stream_get_index(pa_stream *s); /** Connect the stream to a sink */ int pa_stream_connect_playback( pa_stream *s /**< The stream to connect to a sink */, const char *dev /**< Name of the sink to connect to, or NULL for default */ , const pa_buffer_attr *attr /**< Buffering attributes, or NULL for default */, pa_stream_flags_t flags /**< Additional flags, or 0 for default */, pa_cvolume *volume /**< Initial volume, or NULL for default */, pa_stream *sync_stream /**< Synchronize this stream with the specified one, or NULL for a standalone stream*/); /** Connect the stream to a source */ int pa_stream_connect_record( pa_stream *s /**< The stream to connect to a source */ , const char *dev /**< Name of the source to connect to, or NULL for default */, const pa_buffer_attr *attr /**< Buffer attributes, or NULL for default */, pa_stream_flags_t flags /**< Additional flags, or 0 for default */); /** Disconnect a stream from a source/sink */ int pa_stream_disconnect(pa_stream *s); /** Write some data to the server (for playback sinks), if free_cb is * non-NULL this routine is called when all data has been written out * and an internal reference to the specified data is kept, the data * is not copied. If NULL, the data is copied into an internal * buffer. The client my freely seek around in the output buffer. For * most applications passing 0 and PA_SEEK_RELATIVE as arguments for * offset and seek should be useful.*/ int pa_stream_write( pa_stream *p /**< The stream to use */, const void *data /**< The data to write */, size_t length /**< The length of the data to write */, pa_free_cb_t free_cb /**< A cleanup routine for the data or NULL to request an internal copy */, int64_t offset, /**< Offset for seeking, must be 0 for upload streams */ pa_seek_mode_t seek /**< Seek mode, must be PA_SEEK_RELATIVE for upload streams */); /** Read the next fragment from the buffer (for recording). * data will point to the actual data and length will contain the size * of the data in bytes (which can be less than a complete framgnet). * Use pa_stream_drop() to actually remove the data from the * buffer. If no data is available will return a NULL pointer \since 0.8 */ int pa_stream_peek( pa_stream *p /**< The stream to use */, const void **data /**< Pointer to pointer that will point to data */, size_t *length /**< The length of the data read */); /** Remove the current fragment on record streams. It is invalid to do this without first * calling pa_stream_peek(). \since 0.8 */ int pa_stream_drop(pa_stream *p); /** Return the nember of bytes that may be written using pa_stream_write() */ size_t pa_stream_writable_size(pa_stream *p); /** Return the number of bytes that may be read using pa_stream_read() \since 0.8 */ size_t pa_stream_readable_size(pa_stream *p); /** Drain a playback stream. Use this for notification when the buffer is empty */ pa_operation* pa_stream_drain(pa_stream *s, pa_stream_success_cb_t cb, void *userdata); /** Request a timing info structure update for a stream. Use * pa_stream_get_timing_info() to get access to the raw timing data, * or pa_stream_get_time() or pa_stream_get_latency() to get cleaned * up values. */ pa_operation* pa_stream_update_timing_info(pa_stream *p, pa_stream_success_cb_t cb, void *userdata); /** Set the callback function that is called whenever the state of the stream changes */ void pa_stream_set_state_callback(pa_stream *s, pa_stream_notify_cb_t cb, void *userdata); /** Set the callback function that is called when new data may be * written to the stream. */ void pa_stream_set_write_callback(pa_stream *p, pa_stream_request_cb_t cb, void *userdata); /** Set the callback function that is called when new data is available from the stream. * Return the number of bytes read. \since 0.8 */ void pa_stream_set_read_callback(pa_stream *p, pa_stream_request_cb_t cb, void *userdata); /** Set the callback function that is called when a buffer overflow happens. (Only for playback streams) \since 0.8 */ void pa_stream_set_overflow_callback(pa_stream *p, pa_stream_notify_cb_t cb, void *userdata); /** Set the callback function that is called when a buffer underflow happens. (Only for playback streams) \since 0.8 */ void pa_stream_set_underflow_callback(pa_stream *p, pa_stream_notify_cb_t cb, void *userdata); /** Set the callback function that is called whenever a latency information update happens. Useful on PA_STREAM_AUTO_TIMING_UPDATE streams only. (Only for playback streams) \since 0.8.2 */ void pa_stream_set_latency_update_callback(pa_stream *p, pa_stream_notify_cb_t cb, void *userdata); /** Pause (or resume) playback of this stream temporarily. Available on both playback and recording streams. \since 0.3 */ pa_operation* pa_stream_cork(pa_stream *s, int b, pa_stream_success_cb_t cb, void *userdata); /** Flush the playback buffer of this stream. Most of the time you're * better off using the parameter delta of pa_stream_write() instead of this * function. Available on both playback and recording streams. \since 0.3 */ pa_operation* pa_stream_flush(pa_stream *s, pa_stream_success_cb_t cb, void *userdata); /** Reenable prebuffering as specified in the pa_buffer_attr * structure. Available for playback streams only. \since 0.6 */ pa_operation* pa_stream_prebuf(pa_stream *s, pa_stream_success_cb_t cb, void *userdata); /** Request immediate start of playback on this stream. This disables * prebuffering as specified in the pa_buffer_attr * structure, temporarily. Available for playback streams only. \since 0.3 */ pa_operation* pa_stream_trigger(pa_stream *s, pa_stream_success_cb_t cb, void *userdata); /** Rename the stream. \since 0.5 */ pa_operation* pa_stream_set_name(pa_stream *s, const char *name, pa_stream_success_cb_t cb, void *userdata); /** Return the current playback/recording time. This is based on the * data in the timing info structure returned by * pa_stream_get_timing_info(). This function will usually only return * new data if a timing info update has been recieved. Only if timing * interpolation has been requested (PA_STREAM_INTERPOLATE_TIMING) * the data from the last timing update is used for an estimation of * the current playback/recording time based on the local time that * passed since the timing info structure has been acquired. The time * value returned by this function is guaranteed to increase * monotonically. (that means: the returned value is always greater or * equal to the value returned on the last call) This behaviour can * be disabled by using PA_STREAM_NOT_MONOTONOUS. This may be * desirable to deal better with bad estimations of transport * latencies, but may have strange effects if the application is not * able to deal with time going 'backwards'. \since 0.6 */ int pa_stream_get_time(pa_stream *s, pa_usec_t *r_usec); /** Return the total stream latency. This function is based on * pa_stream_get_time(). In case the stream is a monitoring stream the * result can be negative, i.e. the captured samples are not yet * played. In this case *negative is set to 1. \since 0.6 */ int pa_stream_get_latency(pa_stream *s, pa_usec_t *r_usec, int *negative); /** Return the latest raw timing data structure. The returned pointer * points to an internal read-only instance of the timing * structure. The user should make a copy of this structure if he * wants to modify it. An in-place update to this data structure may * be requested using pa_stream_update_timing_info(). If no * pa_stream_update_timing_info() call was issued before, this * function will fail with PA_ERR_NODATA. Please note that the * write_index member field (and only this field) is updated on each * pa_stream_write() call, not just when a timing update has been * recieved. \since 0.8 */ const pa_timing_info* pa_stream_get_timing_info(pa_stream *s); /** Return a pointer to the stream's sample specification. \since 0.6 */ const pa_sample_spec* pa_stream_get_sample_spec(pa_stream *s); /** Return a pointer to the stream's channel map. \since 0.8 */ const pa_channel_map* pa_stream_get_channel_map(pa_stream *s); /** Return the buffer metrics of the stream. Only valid after the * stream has been connected successfuly and if the server is at least * PulseAudio 0.9. \since 0.9.0 */ const pa_buffer_attr* pa_stream_get_buffer_attr(pa_stream *s); PA_C_DECL_END #endif