summaryrefslogtreecommitdiffstats
path: root/src/modules/bluetooth/sbc.c
blob: a33ed571daf374ada51bb31ba170895462576a13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
/*
 *
 *  Bluetooth low-complexity, subband codec (SBC) library
 *
 *  Copyright (C) 2004-2009  Marcel Holtmann <marcel@holtmann.org>
 *  Copyright (C) 2004-2005  Henryk Ploetz <henryk@ploetzli.ch>
 *  Copyright (C) 2005-2008  Brad Midgley <bmidgley@xmission.com>
 *
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2.1 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* todo items:

  use a log2 table for byte integer scale factors calculation (sum log2 results
  for high and low bytes) fill bitpool by 16 bits instead of one at a time in
  bits allocation/bitpool generation port to the dsp

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <limits.h>

#include "sbc_math.h"
#include "sbc_tables.h"

#include "sbc.h"
#include "sbc_primitives.h"

#define SBC_SYNCWORD	0x9C

/* This structure contains an unpacked SBC frame.
   Yes, there is probably quite some unused space herein */
struct sbc_frame {
	uint8_t frequency;
	uint8_t block_mode;
	uint8_t blocks;
	enum {
		MONO		= SBC_MODE_MONO,
		DUAL_CHANNEL	= SBC_MODE_DUAL_CHANNEL,
		STEREO		= SBC_MODE_STEREO,
		JOINT_STEREO	= SBC_MODE_JOINT_STEREO
	} mode;
	uint8_t channels;
	enum {
		LOUDNESS	= SBC_AM_LOUDNESS,
		SNR		= SBC_AM_SNR
	} allocation;
	uint8_t subband_mode;
	uint8_t subbands;
	uint8_t bitpool;
	uint16_t codesize;
	uint8_t length;

	/* bit number x set means joint stereo has been used in subband x */
	uint8_t joint;

	/* only the lower 4 bits of every element are to be used */
	uint32_t scale_factor[2][8];

	/* raw integer subband samples in the frame */
	int32_t SBC_ALIGNED sb_sample_f[16][2][8];

	/* modified subband samples */
	int32_t SBC_ALIGNED sb_sample[16][2][8];

	/* original pcm audio samples */
	int16_t SBC_ALIGNED pcm_sample[2][16*8];
};

struct sbc_decoder_state {
	int subbands;
	int32_t V[2][170];
	int offset[2][16];
};

/*
 * Calculates the CRC-8 of the first len bits in data
 */
static const uint8_t crc_table[256] = {
	0x00, 0x1D, 0x3A, 0x27, 0x74, 0x69, 0x4E, 0x53,
	0xE8, 0xF5, 0xD2, 0xCF, 0x9C, 0x81, 0xA6, 0xBB,
	0xCD, 0xD0, 0xF7, 0xEA, 0xB9, 0xA4, 0x83, 0x9E,
	0x25, 0x38, 0x1F, 0x02, 0x51, 0x4C, 0x6B, 0x76,
	0x87, 0x9A, 0xBD, 0xA0, 0xF3, 0xEE, 0xC9, 0xD4,
	0x6F, 0x72, 0x55, 0x48, 0x1B, 0x06, 0x21, 0x3C,
	0x4A, 0x57, 0x70, 0x6D, 0x3E, 0x23, 0x04, 0x19,
	0xA2, 0xBF, 0x98, 0x85, 0xD6, 0xCB, 0xEC, 0xF1,
	0x13, 0x0E, 0x29, 0x34, 0x67, 0x7A, 0x5D, 0x40,
	0xFB, 0xE6, 0xC1, 0xDC, 0x8F, 0x92, 0xB5, 0xA8,
	0xDE, 0xC3, 0xE4, 0xF9, 0xAA, 0xB7, 0x90, 0x8D,
	0x36, 0x2B, 0x0C, 0x11, 0x42, 0x5F, 0x78, 0x65,
	0x94, 0x89, 0xAE, 0xB3, 0xE0, 0xFD, 0xDA, 0xC7,
	0x7C, 0x61, 0x46, 0x5B, 0x08, 0x15, 0x32, 0x2F,
	0x59, 0x44, 0x63, 0x7E, 0x2D, 0x30, 0x17, 0x0A,
	0xB1, 0xAC, 0x8B, 0x96, 0xC5, 0xD8, 0xFF, 0xE2,
	0x26, 0x3B, 0x1C, 0x01, 0x52, 0x4F, 0x68, 0x75,
	0xCE, 0xD3, 0xF4, 0xE9, 0xBA, 0xA7, 0x80, 0x9D,
	0xEB, 0xF6, 0xD1, 0xCC, 0x9F, 0x82, 0xA5, 0xB8,
	0x03, 0x1E, 0x39, 0x24, 0x77, 0x6A, 0x4D, 0x50,
	0xA1, 0xBC, 0x9B, 0x86, 0xD5, 0xC8, 0xEF, 0xF2,
	0x49, 0x54, 0x73, 0x6E, 0x3D, 0x20, 0x07, 0x1A,
	0x6C, 0x71, 0x56, 0x4B, 0x18, 0x05, 0x22, 0x3F,
	0x84, 0x99, 0xBE, 0xA3, 0xF0, 0xED, 0xCA, 0xD7,
	0x35, 0x28, 0x0F, 0x12, 0x41, 0x5C, 0x7B, 0x66,
	0xDD, 0xC0, 0xE7, 0xFA, 0xA9, 0xB4, 0x93, 0x8E,
	0xF8, 0xE5, 0xC2, 0xDF, 0x8C, 0x91, 0xB6, 0xAB,
	0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43,
	0xB2, 0xAF, 0x88, 0x95, 0xC6, 0xDB, 0xFC, 0xE1,
	0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09,
	0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C,
	0x97, 0x8A, 0xAD, 0xB0, 0xE3, 0xFE, 0xD9, 0xC4
};

static uint8_t sbc_crc8(const uint8_t *data, size_t len)
{
	uint8_t crc = 0x0f;
	size_t i;
	uint8_t octet;

	for (i = 0; i < len / 8; i++)
		crc = crc_table[crc ^ data[i]];

	octet = data[i];
	for (i = 0; i < len % 8; i++) {
		char bit = ((octet ^ crc) & 0x80) >> 7;

		crc = ((crc & 0x7f) << 1) ^ (bit ? 0x1d : 0);

		octet = octet << 1;
	}

	return crc;
}

/*
 * Code straight from the spec to calculate the bits array
 * Takes a pointer to the frame in question, a pointer to the bits array and
 * the sampling frequency (as 2 bit integer)
 */
static void sbc_calculate_bits(const struct sbc_frame *frame, int (*bits)[8])
{
	uint8_t sf = frame->frequency;

	if (frame->mode == MONO || frame->mode == DUAL_CHANNEL) {
		int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice;
		int ch, sb;

		for (ch = 0; ch < frame->channels; ch++) {
			max_bitneed = 0;
			if (frame->allocation == SNR) {
				for (sb = 0; sb < frame->subbands; sb++) {
					bitneed[ch][sb] = frame->scale_factor[ch][sb];
					if (bitneed[ch][sb] > max_bitneed)
						max_bitneed = bitneed[ch][sb];
				}
			} else {
				for (sb = 0; sb < frame->subbands; sb++) {
					if (frame->scale_factor[ch][sb] == 0)
						bitneed[ch][sb] = -5;
					else {
						if (frame->subbands == 4)
							loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb];
						else
							loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb];
						if (loudness > 0)
							bitneed[ch][sb] = loudness / 2;
						else
							bitneed[ch][sb] = loudness;
					}
					if (bitneed[ch][sb] > max_bitneed)
						max_bitneed = bitneed[ch][sb];
				}
			}

			bitcount = 0;
			slicecount = 0;
			bitslice = max_bitneed + 1;
			do {
				bitslice--;
				bitcount += slicecount;
				slicecount = 0;
				for (sb = 0; sb < frame->subbands; sb++) {
					if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16))
						slicecount++;
					else if (bitneed[ch][sb] == bitslice + 1)
						slicecount += 2;
				}
			} while (bitcount + slicecount < frame->bitpool);

			if (bitcount + slicecount == frame->bitpool) {
				bitcount += slicecount;
				bitslice--;
			}

			for (sb = 0; sb < frame->subbands; sb++) {
				if (bitneed[ch][sb] < bitslice + 2)
					bits[ch][sb] = 0;
				else {
					bits[ch][sb] = bitneed[ch][sb] - bitslice;
					if (bits[ch][sb] > 16)
						bits[ch][sb] = 16;
				}
			}

			for (sb = 0; bitcount < frame->bitpool && sb < frame->subbands; sb++) {
				if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) {
					bits[ch][sb]++;
					bitcount++;
				} else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) {
					bits[ch][sb] = 2;
					bitcount += 2;
				}
			}

			for (sb = 0; bitcount < frame->bitpool && sb < frame->subbands; sb++) {
				if (bits[ch][sb] < 16) {
					bits[ch][sb]++;
					bitcount++;
				}
			}

		}

	} else if (frame->mode == STEREO || frame->mode == JOINT_STEREO) {
		int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice;
		int ch, sb;

		max_bitneed = 0;
		if (frame->allocation == SNR) {
			for (ch = 0; ch < 2; ch++) {
				for (sb = 0; sb < frame->subbands; sb++) {
					bitneed[ch][sb] = frame->scale_factor[ch][sb];
					if (bitneed[ch][sb] > max_bitneed)
						max_bitneed = bitneed[ch][sb];
				}
			}
		} else {
			for (ch = 0; ch < 2; ch++) {
				for (sb = 0; sb < frame->subbands; sb++) {
					if (frame->scale_factor[ch][sb] == 0)
						bitneed[ch][sb] = -5;
					else {
						if (frame->subbands == 4)
							loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb];
						else
							loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb];
						if (loudness > 0)
							bitneed[ch][sb] = loudness / 2;
						else
							bitneed[ch][sb] = loudness;
					}
					if (bitneed[ch][sb] > max_bitneed)
						max_bitneed = bitneed[ch][sb];
				}
			}
		}

		bitcount = 0;
		slicecount = 0;
		bitslice = max_bitneed + 1;
		do {
			bitslice--;
			bitcount += slicecount;
			slicecount = 0;
			for (ch = 0; ch < 2; ch++) {
				for (sb = 0; sb < frame->subbands; sb++) {
					if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16))
						slicecount++;
					else if (bitneed[ch][sb] == bitslice + 1)
						slicecount += 2;
				}
			}
		} while (bitcount + slicecount < frame->bitpool);

		if (bitcount + slicecount == frame->bitpool) {
			bitcount += slicecount;
			bitslice--;
		}

		for (ch = 0; ch < 2; ch++) {
			for (sb = 0; sb < frame->subbands; sb++) {
				if (bitneed[ch][sb] < bitslice + 2) {
					bits[ch][sb] = 0;
				} else {
					bits[ch][sb] = bitneed[ch][sb] - bitslice;
					if (bits[ch][sb] > 16)
						bits[ch][sb] = 16;
				}
			}
		}

		ch = 0;
		sb = 0;
		while (bitcount < frame->bitpool) {
			if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) {
				bits[ch][sb]++;
				bitcount++;
			} else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) {
				bits[ch][sb] = 2;
				bitcount += 2;
			}
			if (ch == 1) {
				ch = 0;
				sb++;
				if (sb >= frame->subbands) break;
			} else
				ch = 1;
		}

		ch = 0;
		sb = 0;
		while (bitcount < frame->bitpool) {
			if (bits[ch][sb] < 16) {
				bits[ch][sb]++;
				bitcount++;
			}
			if (ch == 1) {
				ch = 0;
				sb++;
				if (sb >= frame->subbands) break;
			} else
				ch = 1;
		}

	}

}

/*
 * Unpacks a SBC frame at the beginning of the stream in data,
 * which has at most len bytes into frame.
 * Returns the length in bytes of the packed frame, or a negative
 * value on error. The error codes are:
 *
 *  -1   Data stream too short
 *  -2   Sync byte incorrect
 *  -3   CRC8 incorrect
 *  -4   Bitpool value out of bounds
 */
static int sbc_unpack_frame(const uint8_t *data, struct sbc_frame *frame,
				size_t len)
{
	unsigned int consumed;
	/* Will copy the parts of the header that are relevant to crc
	 * calculation here */
	uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
	int crc_pos = 0;
	int32_t temp;

	int audio_sample;
	int ch, sb, blk, bit;	/* channel, subband, block and bit standard
				   counters */
	int bits[2][8];		/* bits distribution */
	uint32_t levels[2][8];	/* levels derived from that */

	if (len < 4)
		return -1;

	if (data[0] != SBC_SYNCWORD)
		return -2;

	frame->frequency = (data[1] >> 6) & 0x03;

	frame->block_mode = (data[1] >> 4) & 0x03;
	switch (frame->block_mode) {
	case SBC_BLK_4:
		frame->blocks = 4;
		break;
	case SBC_BLK_8:
		frame->blocks = 8;
		break;
	case SBC_BLK_12:
		frame->blocks = 12;
		break;
	case SBC_BLK_16:
		frame->blocks = 16;
		break;
	}

	frame->mode = (data[1] >> 2) & 0x03;
	switch (frame->mode) {
	case MONO:
		frame->channels = 1;
		break;
	case DUAL_CHANNEL:	/* fall-through */
	case STEREO:
	case JOINT_STEREO:
		frame->channels = 2;
		break;
	}

	frame->allocation = (data[1] >> 1) & 0x01;

	frame->subband_mode = (data[1] & 0x01);
	frame->subbands = frame->subband_mode ? 8 : 4;

	frame->bitpool = data[2];

	if ((frame->mode == MONO || frame->mode == DUAL_CHANNEL) &&
			frame->bitpool > 16 * frame->subbands)
		return -4;

	if ((frame->mode == STEREO || frame->mode == JOINT_STEREO) &&
			frame->bitpool > 32 * frame->subbands)
		return -4;

	/* data[3] is crc, we're checking it later */

	consumed = 32;

	crc_header[0] = data[1];
	crc_header[1] = data[2];
	crc_pos = 16;

	if (frame->mode == JOINT_STEREO) {
		if (len * 8 < consumed + frame->subbands)
			return -1;

		frame->joint = 0x00;
		for (sb = 0; sb < frame->subbands - 1; sb++)
			frame->joint |= ((data[4] >> (7 - sb)) & 0x01) << sb;
		if (frame->subbands == 4)
			crc_header[crc_pos / 8] = data[4] & 0xf0;
		else
			crc_header[crc_pos / 8] = data[4];

		consumed += frame->subbands;
		crc_pos += frame->subbands;
	}

	if (len * 8 < consumed + (4 * frame->subbands * frame->channels))
		return -1;

	for (ch = 0; ch < frame->channels; ch++) {
		for (sb = 0; sb < frame->subbands; sb++) {
			/* FIXME assert(consumed % 4 == 0); */
			frame->scale_factor[ch][sb] =
				(data[consumed >> 3] >> (4 - (consumed & 0x7))) & 0x0F;
			crc_header[crc_pos >> 3] |=
				frame->scale_factor[ch][sb] << (4 - (crc_pos & 0x7));

			consumed += 4;
			crc_pos += 4;
		}
	}

	if (data[3] != sbc_crc8(crc_header, crc_pos))
		return -3;

	sbc_calculate_bits(frame, bits);

	for (ch = 0; ch < frame->channels; ch++) {
		for (sb = 0; sb < frame->subbands; sb++)
			levels[ch][sb] = (1 << bits[ch][sb]) - 1;
	}

	for (blk = 0; blk < frame->blocks; blk++) {
		for (ch = 0; ch < frame->channels; ch++) {
			for (sb = 0; sb < frame->subbands; sb++) {
				if (levels[ch][sb] > 0) {
					audio_sample = 0;
					for (bit = 0; bit < bits[ch][sb]; bit++) {
						if (consumed > len * 8)
							return -1;

						if ((data[consumed >> 3] >> (7 - (consumed & 0x7))) & 0x01)
							audio_sample |= 1 << (bits[ch][sb] - bit - 1);

						consumed++;
					}

					frame->sb_sample[blk][ch][sb] =
						(((audio_sample << 1) | 1) << frame->scale_factor[ch][sb]) /
						levels[ch][sb] - (1 << frame->scale_factor[ch][sb]);
				} else
					frame->sb_sample[blk][ch][sb] = 0;
			}
		}
	}

	if (frame->mode == JOINT_STEREO) {
		for (blk = 0; blk < frame->blocks; blk++) {
			for (sb = 0; sb < frame->subbands; sb++) {
				if (frame->joint & (0x01 << sb)) {
					temp = frame->sb_sample[blk][0][sb] +
						frame->sb_sample[blk][1][sb];
					frame->sb_sample[blk][1][sb] =
						frame->sb_sample[blk][0][sb] -
						frame->sb_sample[blk][1][sb];
					frame->sb_sample[blk][0][sb] = temp;
				}
			}
		}
	}

	if ((consumed & 0x7) != 0)
		consumed += 8 - (consumed & 0x7);

	return consumed >> 3;
}

static void sbc_decoder_init(struct sbc_decoder_state *state,
				const struct sbc_frame *frame)
{
	int i, ch;

	memset(state->V, 0, sizeof(state->V));
	state->subbands = frame->subbands;

	for (ch = 0; ch < 2; ch++)
		for (i = 0; i < frame->subbands * 2; i++)
			state->offset[ch][i] = (10 * i + 10);
}

static inline void sbc_synthesize_four(struct sbc_decoder_state *state,
				struct sbc_frame *frame, int ch, int blk)
{
	int i, k, idx;
	int32_t *v = state->V[ch];
	int *offset = state->offset[ch];

	for (i = 0; i < 8; i++) {
		/* Shifting */
		offset[i]--;
		if (offset[i] < 0) {
			offset[i] = 79;
			memcpy(v + 80, v, 9 * sizeof(*v));
		}

		/* Distribute the new matrix value to the shifted position */
		v[offset[i]] = SCALE4_STAGED1(
			MULA(synmatrix4[i][0], frame->sb_sample[blk][ch][0],
			MULA(synmatrix4[i][1], frame->sb_sample[blk][ch][1],
			MULA(synmatrix4[i][2], frame->sb_sample[blk][ch][2],
			MUL (synmatrix4[i][3], frame->sb_sample[blk][ch][3])))));
	}

	/* Compute the samples */
	for (idx = 0, i = 0; i < 4; i++, idx += 5) {
		k = (i + 4) & 0xf;

		/* Store in output, Q0 */
		frame->pcm_sample[ch][blk * 4 + i] = SCALE4_STAGED1(
			MULA(v[offset[i] + 0], sbc_proto_4_40m0[idx + 0],
			MULA(v[offset[k] + 1], sbc_proto_4_40m1[idx + 0],
			MULA(v[offset[i] + 2], sbc_proto_4_40m0[idx + 1],
			MULA(v[offset[k] + 3], sbc_proto_4_40m1[idx + 1],
			MULA(v[offset[i] + 4], sbc_proto_4_40m0[idx + 2],
			MULA(v[offset[k] + 5], sbc_proto_4_40m1[idx + 2],
			MULA(v[offset[i] + 6], sbc_proto_4_40m0[idx + 3],
			MULA(v[offset[k] + 7], sbc_proto_4_40m1[idx + 3],
			MULA(v[offset[i] + 8], sbc_proto_4_40m0[idx + 4],
			MUL( v[offset[k] + 9], sbc_proto_4_40m1[idx + 4])))))))))));
	}
}

static inline void sbc_synthesize_eight(struct sbc_decoder_state *state,
				struct sbc_frame *frame, int ch, int blk)
{
	int i, j, k, idx;
	int *offset = state->offset[ch];

	for (i = 0; i < 16; i++) {
		/* Shifting */
		offset[i]--;
		if (offset[i] < 0) {
			offset[i] = 159;
			for (j = 0; j < 9; j++)
				state->V[ch][j + 160] = state->V[ch][j];
		}

		/* Distribute the new matrix value to the shifted position */
		state->V[ch][offset[i]] = SCALE8_STAGED1(
			MULA(synmatrix8[i][0], frame->sb_sample[blk][ch][0],
			MULA(synmatrix8[i][1], frame->sb_sample[blk][ch][1],
			MULA(synmatrix8[i][2], frame->sb_sample[blk][ch][2],
			MULA(synmatrix8[i][3], frame->sb_sample[blk][ch][3],
			MULA(synmatrix8[i][4], frame->sb_sample[blk][ch][4],
			MULA(synmatrix8[i][5], frame->sb_sample[blk][ch][5],
			MULA(synmatrix8[i][6], frame->sb_sample[blk][ch][6],
			MUL( synmatrix8[i][7], frame->sb_sample[blk][ch][7])))))))));
	}

	/* Compute the samples */
	for (idx = 0, i = 0; i < 8; i++, idx += 5) {
		k = (i + 8) & 0xf;

		/* Store in output */
		frame->pcm_sample[ch][blk * 8 + i] = SCALE8_STAGED1( // Q0
			MULA(state->V[ch][offset[i] + 0], sbc_proto_8_80m0[idx + 0],
			MULA(state->V[ch][offset[k] + 1], sbc_proto_8_80m1[idx + 0],
			MULA(state->V[ch][offset[i] + 2], sbc_proto_8_80m0[idx + 1],
			MULA(state->V[ch][offset[k] + 3], sbc_proto_8_80m1[idx + 1],
			MULA(state->V[ch][offset[i] + 4], sbc_proto_8_80m0[idx + 2],
			MULA(state->V[ch][offset[k] + 5], sbc_proto_8_80m1[idx + 2],
			MULA(state->V[ch][offset[i] + 6], sbc_proto_8_80m0[idx + 3],
			MULA(state->V[ch][offset[k] + 7], sbc_proto_8_80m1[idx + 3],
			MULA(state->V[ch][offset[i] + 8], sbc_proto_8_80m0[idx + 4],
			MUL( state->V[ch][offset[k] + 9], sbc_proto_8_80m1[idx + 4])))))))))));
	}
}

static int sbc_synthesize_audio(struct sbc_decoder_state *state,
				struct sbc_frame *frame)
{
	int ch, blk;

	switch (frame->subbands) {
	case 4:
		for (ch = 0; ch < frame->channels; ch++) {
			for (blk = 0; blk < frame->blocks; blk++)
				sbc_synthesize_four(state, frame, ch, blk);
		}
		return frame->blocks * 4;

	case 8:
		for (ch = 0; ch < frame->channels; ch++) {
			for (blk = 0; blk < frame->blocks; blk++)
				sbc_synthesize_eight(state, frame, ch, blk);
		}
		return frame->blocks * 8;

	default:
		return -EIO;
	}
}

static int sbc_analyze_audio(struct sbc_encoder_state *state,
				struct sbc_frame *frame)
{
	int ch, blk;
	int16_t *x;

	switch (frame->subbands) {
	case 4:
		for (ch = 0; ch < frame->channels; ch++) {
			x = &state->X[ch][state->position - 16 +
							frame->blocks * 4];
			for (blk = 0; blk < frame->blocks; blk += 4) {
				state->sbc_analyze_4b_4s(
					x,
					frame->sb_sample_f[blk][ch],
					frame->sb_sample_f[blk + 1][ch] -
					frame->sb_sample_f[blk][ch]);
				x -= 16;
			}
		}
		return frame->blocks * 4;

	case 8:
		for (ch = 0; ch < frame->channels; ch++) {
			x = &state->X[ch][state->position - 32 +
							frame->blocks * 8];
			for (blk = 0; blk < frame->blocks; blk += 4) {
				state->sbc_analyze_4b_8s(
					x,
					frame->sb_sample_f[blk][ch],
					frame->sb_sample_f[blk + 1][ch] -
					frame->sb_sample_f[blk][ch]);
				x -= 32;
			}
		}
		return frame->blocks * 8;

	default:
		return -EIO;
	}
}

/* Supplementary bitstream writing macros for 'sbc_pack_frame' */

#define PUT_BITS(data_ptr, bits_cache, bits_count, v, n)		\
	do {								\
		bits_cache = (v) | (bits_cache << (n));			\
		bits_count += (n);					\
		if (bits_count >= 16) {					\
			bits_count -= 8;				\
			*data_ptr++ = (uint8_t)				\
				(bits_cache >> bits_count);		\
			bits_count -= 8;				\
			*data_ptr++ = (uint8_t)				\
				(bits_cache >> bits_count);		\
		}							\
	} while (0)

#define FLUSH_BITS(data_ptr, bits_cache, bits_count)			\
	do {								\
		while (bits_count >= 8) {				\
			bits_count -= 8;				\
			*data_ptr++ = (uint8_t)				\
				(bits_cache >> bits_count);		\
		}							\
		if (bits_count > 0)					\
			*data_ptr++ = (uint8_t)				\
				(bits_cache << (8 - bits_count));	\
	} while (0)

/*
 * Packs the SBC frame from frame into the memory at data. At most len
 * bytes will be used, should more memory be needed an appropriate
 * error code will be returned. Returns the length of the packed frame
 * on success or a negative value on error.
 *
 * The error codes are:
 * -1 Not enough memory reserved
 * -2 Unsupported sampling rate
 * -3 Unsupported number of blocks
 * -4 Unsupported number of subbands
 * -5 Bitpool value out of bounds
 * -99 not implemented
 */

static SBC_ALWAYS_INLINE int sbc_pack_frame_internal(
	uint8_t *data, struct sbc_frame *frame, size_t len,
	int frame_subbands, int frame_channels)
{
	/* Bitstream writer starts from the fourth byte */
	uint8_t *data_ptr = data + 4;
	uint32_t bits_cache = 0;
	uint32_t bits_count = 0;

	/* Will copy the header parts for CRC-8 calculation here */
	uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
	int crc_pos = 0;

	uint32_t audio_sample;

	int ch, sb, blk;	/* channel, subband, block and bit counters */
	int bits[2][8];		/* bits distribution */
	uint32_t levels[2][8];	/* levels are derived from that */
	uint32_t sb_sample_delta[2][8];

	data[0] = SBC_SYNCWORD;

	data[1] = (frame->frequency & 0x03) << 6;

	data[1] |= (frame->block_mode & 0x03) << 4;

	data[1] |= (frame->mode & 0x03) << 2;

	data[1] |= (frame->allocation & 0x01) << 1;

	switch (frame_subbands) {
	case 4:
		/* Nothing to do */
		break;
	case 8:
		data[1] |= 0x01;
		break;
	default:
		return -4;
		break;
	}

	data[2] = frame->bitpool;

	if ((frame->mode == MONO || frame->mode == DUAL_CHANNEL) &&
			frame->bitpool > frame_subbands << 4)
		return -5;

	if ((frame->mode == STEREO || frame->mode == JOINT_STEREO) &&
			frame->bitpool > frame_subbands << 5)
		return -5;

	/* Can't fill in crc yet */

	crc_header[0] = data[1];
	crc_header[1] = data[2];
	crc_pos = 16;

	if (frame->mode == JOINT_STEREO) {
		/* like frame->sb_sample but joint stereo */
		int32_t sb_sample_j[16][2];
		/* scalefactor and scale_factor in joint case */
		uint32_t scalefactor_j[2];
		uint8_t scale_factor_j[2];

		uint8_t joint = 0;
		frame->joint = 0;

		for (sb = 0; sb < frame_subbands - 1; sb++) {
			scale_factor_j[0] = 0;
			scalefactor_j[0] = 2 << SCALE_OUT_BITS;
			scale_factor_j[1] = 0;
			scalefactor_j[1] = 2 << SCALE_OUT_BITS;

			for (blk = 0; blk < frame->blocks; blk++) {
				uint32_t tmp;
				/* Calculate joint stereo signal */
				sb_sample_j[blk][0] =
					ASR(frame->sb_sample_f[blk][0][sb], 1) +
					ASR(frame->sb_sample_f[blk][1][sb], 1);
				sb_sample_j[blk][1] =
					ASR(frame->sb_sample_f[blk][0][sb], 1) -
					ASR(frame->sb_sample_f[blk][1][sb], 1);

				/* calculate scale_factor_j and scalefactor_j for joint case */
				tmp = fabs(sb_sample_j[blk][0]);
				while (scalefactor_j[0] < tmp) {
					scale_factor_j[0]++;
					scalefactor_j[0] *= 2;
				}
				tmp = fabs(sb_sample_j[blk][1]);
				while (scalefactor_j[1] < tmp) {
					scale_factor_j[1]++;
					scalefactor_j[1] *= 2;
				}
			}

			/* decide whether to join this subband */
			if ((frame->scale_factor[0][sb] +
					frame->scale_factor[1][sb]) >
					(scale_factor_j[0] +
					scale_factor_j[1])) {
				/* use joint stereo for this subband */
				joint |= 1 << (frame_subbands - 1 - sb);
				frame->joint |= 1 << sb;
				frame->scale_factor[0][sb] = scale_factor_j[0];
				frame->scale_factor[1][sb] = scale_factor_j[1];
				for (blk = 0; blk < frame->blocks; blk++) {
					frame->sb_sample_f[blk][0][sb] =
							sb_sample_j[blk][0];
					frame->sb_sample_f[blk][1][sb] =
							sb_sample_j[blk][1];
				}
			}
		}

		PUT_BITS(data_ptr, bits_cache, bits_count,
			joint, frame_subbands);
		crc_header[crc_pos >> 3] = joint;
		crc_pos += frame_subbands;
	}

	for (ch = 0; ch < frame_channels; ch++) {
		for (sb = 0; sb < frame_subbands; sb++) {
			PUT_BITS(data_ptr, bits_cache, bits_count,
				frame->scale_factor[ch][sb] & 0x0F, 4);
			crc_header[crc_pos >> 3] <<= 4;
			crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] & 0x0F;
			crc_pos += 4;
		}
	}

	/* align the last crc byte */
	if (crc_pos % 8)
		crc_header[crc_pos >> 3] <<= 8 - (crc_pos % 8);

	data[3] = sbc_crc8(crc_header, crc_pos);

	sbc_calculate_bits(frame, bits);

	for (ch = 0; ch < frame_channels; ch++) {
		for (sb = 0; sb < frame_subbands; sb++) {
			levels[ch][sb] = ((1 << bits[ch][sb]) - 1) <<
				(32 - (frame->scale_factor[ch][sb] +
					SCALE_OUT_BITS + 2));
			sb_sample_delta[ch][sb] = (uint32_t) 1 <<
				(frame->scale_factor[ch][sb] +
					SCALE_OUT_BITS + 1);
		}
	}

	for (blk = 0; blk < frame->blocks; blk++) {
		for (ch = 0; ch < frame_channels; ch++) {
			for (sb = 0; sb < frame_subbands; sb++) {

				if (bits[ch][sb] == 0)
					continue;

				audio_sample = ((uint64_t) levels[ch][sb] *
					(sb_sample_delta[ch][sb] +
					frame->sb_sample_f[blk][ch][sb])) >> 32;

				PUT_BITS(data_ptr, bits_cache, bits_count,
					audio_sample, bits[ch][sb]);
			}
		}
	}

	FLUSH_BITS(data_ptr, bits_cache, bits_count);

	return data_ptr - data;
}

static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
{
	if (frame->subbands == 4) {
		if (frame->channels == 1)
			return sbc_pack_frame_internal(data, frame, len, 4, 1);
		else
			return sbc_pack_frame_internal(data, frame, len, 4, 2);
	} else {
		if (frame->channels == 1)
			return sbc_pack_frame_internal(data, frame, len, 8, 1);
		else
			return sbc_pack_frame_internal(data, frame, len, 8, 2);
	}
}

static void sbc_encoder_init(struct sbc_encoder_state *state,
				const struct sbc_frame *frame)
{
	memset(&state->X, 0, sizeof(state->X));
	state->position = SBC_X_BUFFER_SIZE - frame->subbands * 9;

	sbc_init_primitives(state);
}

struct sbc_priv {
	int init;
	struct SBC_ALIGNED sbc_frame frame;
	struct SBC_ALIGNED sbc_decoder_state dec_state;
	struct SBC_ALIGNED sbc_encoder_state enc_state;
};

static void sbc_set_defaults(sbc_t *sbc, unsigned long flags)
{
	sbc->frequency = SBC_FREQ_44100;
	sbc->mode = SBC_MODE_STEREO;
	sbc->subbands = SBC_SB_8;
	sbc->blocks = SBC_BLK_16;
	sbc->bitpool = 32;
#if __BYTE_ORDER == __LITTLE_ENDIAN
	sbc->endian = SBC_LE;
#elif __BYTE_ORDER == __BIG_ENDIAN
	sbc->endian = SBC_BE;
#else
#error "Unknown byte order"
#endif
}

int sbc_init(sbc_t *sbc, unsigned long flags)
{
	if (!sbc)
		return -EIO;

	memset(sbc, 0, sizeof(sbc_t));

	sbc->priv_alloc_base = malloc(sizeof(struct sbc_priv) + SBC_ALIGN_MASK);
	if (!sbc->priv_alloc_base)
		return -ENOMEM;

	sbc->priv = (void *) (((uintptr_t) sbc->priv_alloc_base +
			SBC_ALIGN_MASK) & ~((uintptr_t) SBC_ALIGN_MASK));

	memset(sbc->priv, 0, sizeof(struct sbc_priv));

	sbc_set_defaults(sbc, flags);

	return 0;
}

int sbc_parse(sbc_t *sbc, void *input, int input_len)
{
	return sbc_decode(sbc, input, input_len, NULL, 0, NULL);
}

int sbc_decode(sbc_t *sbc, void *input, int input_len, void *output,
		int output_len, int *written)
{
	struct sbc_priv *priv;
	char *ptr;
	int i, ch, framelen, samples;

	if (!sbc || !input)
		return -EIO;

	priv = sbc->priv;

	framelen = sbc_unpack_frame(input, &priv->frame, input_len);

	if (!priv->init) {
		sbc_decoder_init(&priv->dec_state, &priv->frame);
		priv->init = 1;

		sbc->frequency = priv->frame.frequency;
		sbc->mode = priv->frame.mode;
		sbc->subbands = priv->frame.subband_mode;
		sbc->blocks = priv->frame.block_mode;
		sbc->allocation = priv->frame.allocation;
		sbc->bitpool = priv->frame.bitpool;

		priv->frame.codesize = sbc_get_codesize(sbc);
		priv->frame.length = sbc_get_frame_length(sbc);
	}

	if (!output)
		return framelen;

	if (written)
		*written = 0;

	if (framelen <= 0)
		return framelen;

	samples = sbc_synthesize_audio(&priv->dec_state, &priv->frame);

	ptr = output;

	if (output_len < samples * priv->frame.channels * 2)
		samples = output_len / (priv->frame.channels * 2);

	for (i = 0; i < samples; i++) {
		for (ch = 0; ch < priv->frame.channels; ch++) {
			int16_t s;
			s = priv->frame.pcm_sample[ch][i];

			if (sbc->endian == SBC_BE) {
				*ptr++ = (s & 0xff00) >> 8;
				*ptr++ = (s & 0x00ff);
			} else {
				*ptr++ = (s & 0x00ff);
				*ptr++ = (s & 0xff00) >> 8;
			}
		}
	}

	if (written)
		*written = samples * priv->frame.channels * 2;

	return framelen;
}

int sbc_encode(sbc_t *sbc, void *input, int input_len, void *output,
		int output_len, int *written)
{
	struct sbc_priv *priv;
	int framelen, samples;
	int (*sbc_enc_process_input)(int position,
			const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
			int nsamples, int nchannels);

	if (!sbc || !input)
		return -EIO;

	priv = sbc->priv;

	if (written)
		*written = 0;

	if (!priv->init) {
		priv->frame.frequency = sbc->frequency;
		priv->frame.mode = sbc->mode;
		priv->frame.channels = sbc->mode == SBC_MODE_MONO ? 1 : 2;
		priv->frame.allocation = sbc->allocation;
		priv->frame.subband_mode = sbc->subbands;
		priv->frame.subbands = sbc->subbands ? 8 : 4;
		priv->frame.block_mode = sbc->blocks;
		priv->frame.blocks = 4 + (sbc->blocks * 4);
		priv->frame.bitpool = sbc->bitpool;
		priv->frame.codesize = sbc_get_codesize(sbc);
		priv->frame.length = sbc_get_frame_length(sbc);

		sbc_encoder_init(&priv->enc_state, &priv->frame);
		priv->init = 1;
	}

	/* input must be large enough to encode a complete frame */
	if (input_len < priv->frame.codesize)
		return 0;

	/* output must be large enough to receive the encoded frame */
	if (!output || output_len < priv->frame.length)
		return -ENOSPC;

	/* Select the needed input data processing function and call it */
	if (priv->frame.subbands == 8) {
		if (sbc->endian == SBC_BE)
			sbc_enc_process_input =
				priv->enc_state.sbc_enc_process_input_8s_be;
		else
			sbc_enc_process_input =
				priv->enc_state.sbc_enc_process_input_8s_le;
	} else {
		if (sbc->endian == SBC_BE)
			sbc_enc_process_input =
				priv->enc_state.sbc_enc_process_input_4s_be;
		else
			sbc_enc_process_input =
				priv->enc_state.sbc_enc_process_input_4s_le;
	}

	priv->enc_state.position = sbc_enc_process_input(
		priv->enc_state.position, (const uint8_t *) input,
		priv->enc_state.X, priv->frame.subbands * priv->frame.blocks,
		priv->frame.channels);

	samples = sbc_analyze_audio(&priv->enc_state, &priv->frame);

	priv->enc_state.sbc_calc_scalefactors(
		priv->frame.sb_sample_f, priv->frame.scale_factor,
		priv->frame.blocks, priv->frame.channels, priv->frame.subbands);

	framelen = sbc_pack_frame(output, &priv->frame, output_len);

	if (written)
		*written = framelen;

	return samples * priv->frame.channels * 2;
}

void sbc_finish(sbc_t *sbc)
{
	if (!sbc)
		return;

	if (sbc->priv_alloc_base)
		free(sbc->priv_alloc_base);

	memset(sbc, 0, sizeof(sbc_t));
}

int sbc_get_frame_length(sbc_t *sbc)
{
	int ret;
	uint8_t subbands, channels, blocks, joint;
	struct sbc_priv *priv;

	priv = sbc->priv;
	if (!priv->init) {
		subbands = sbc->subbands ? 8 : 4;
		blocks = 4 + (sbc->blocks * 4);
		channels = sbc->mode == SBC_MODE_MONO ? 1 : 2;
		joint = sbc->mode == SBC_MODE_JOINT_STEREO ? 1 : 0;
	} else {
		subbands = priv->frame.subbands;
		blocks = priv->frame.blocks;
		channels = priv->frame.channels;
		joint = priv->frame.joint;
	}

	ret = 4 + (4 * subbands * channels) / 8;

	/* This term is not always evenly divide so we round it up */
	if (channels == 1)
		ret += ((blocks * channels * sbc->bitpool) + 7) / 8;
	else
		ret += (((joint ? subbands : 0) + blocks * sbc->bitpool) + 7)
			/ 8;

	return ret;
}

int sbc_get_frame_duration(sbc_t *sbc)
{
	uint8_t subbands, blocks;
	uint16_t frequency;
	struct sbc_priv *priv;

	priv = sbc->priv;
	if (!priv->init) {
		subbands = sbc->subbands ? 8 : 4;
		blocks = 4 + (sbc->blocks * 4);
	} else {
		subbands = priv->frame.subbands;
		blocks = priv->frame.blocks;
	}

	switch (sbc->frequency) {
	case SBC_FREQ_16000:
		frequency = 16000;
		break;

	case SBC_FREQ_32000:
		frequency = 32000;
		break;

	case SBC_FREQ_44100:
		frequency = 44100;
		break;

	case SBC_FREQ_48000:
		frequency = 48000;
		break;
	default:
		return 0;
	}

	return (1000000 * blocks * subbands) / frequency;
}

uint16_t sbc_get_codesize(sbc_t *sbc)
{
	uint16_t subbands, channels, blocks;
	struct sbc_priv *priv;

	priv = sbc->priv;
	if (!priv->init) {
		subbands = sbc->subbands ? 8 : 4;
		blocks = 4 + (sbc->blocks * 4);
		channels = sbc->mode == SBC_MODE_MONO ? 1 : 2;
	} else {
		subbands = priv->frame.subbands;
		blocks = priv->frame.blocks;
		channels = priv->frame.channels;
	}

	return subbands * blocks * channels * 2;
}

const char *sbc_get_implementation_info(sbc_t *sbc)
{
	struct sbc_priv *priv;

	if (!sbc)
		return NULL;

	priv = sbc->priv;
	if (!priv)
		return NULL;

	return priv->enc_state.implementation_info;
}

int sbc_reinit(sbc_t *sbc, unsigned long flags)
{
	struct sbc_priv *priv;

	if (!sbc || !sbc->priv)
		return -EIO;

	priv = sbc->priv;

	if (priv->init == 1)
		memset(sbc->priv, 0, sizeof(struct sbc_priv));

	sbc_set_defaults(sbc, flags);

	return 0;
}