summaryrefslogtreecommitdiffstats
path: root/src/modules/module-equalizer-sink.c
blob: d8eb5f3da373e295ae9d4fba27592c062511a5ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
/***
This file is part of PulseAudio.

This module is based off Lennart Poettering's LADSPA sink and swaps out
LADSPA functionality for a STFT OLA based digital equalizer.  All new work
is published under Pulseaudio's original license.
Copyright 2009 Jason Newton <nevion@gmail.com>

Original Author:
Copyright 2004-2008 Lennart Poettering

PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.

PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#include <math.h>
#include <fftw3.h>
#include <string.h>

#include <pulse/xmalloc.h>
#include <pulse/i18n.h>

#include <pulsecore/core-error.h>
#include <pulsecore/namereg.h>
#include <pulsecore/sink.h>
#include <pulsecore/module.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/ltdl-helper.h>
#include <pulsecore/protocol-dbus.h>
#include <pulsecore/dbus-util.h>

#include <stdint.h>
#include <time.h>


//#undef __SSE2__
#ifdef __SSE2__
#include <xmmintrin.h>
#include <emmintrin.h>
#endif



#include "module-equalizer-sink-symdef.h"

PA_MODULE_AUTHOR("Jason Newton");
PA_MODULE_DESCRIPTION(_("General Purpose Equalizer"));
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(FALSE);
PA_MODULE_USAGE(_("sink=<sink to connect to> "));

#define MEMBLOCKQ_MAXLENGTH (16*1024*1024)


struct userdata {
    pa_core *core;
    pa_module *module;
    pa_sink *sink, *master;
    pa_sink_input *sink_input;

    size_t channels;
    size_t fft_size;//length (res) of fft
    size_t window_size;/*
                        *sliding window size
                        *effectively chooses R
                        */
    size_t R;/* the hop size between overlapping windows
              * the latency of the filter, calculated from window_size
              * based on constraints of COLA and window function
              */
    size_t latency;//Really just R but made into it's own variable
    //for twiddling with pulseaudio
    size_t overlap_size;//window_size-R
    size_t samples_gathered;
    size_t max_output;//max amount of samples outputable in a single
    //message
    size_t target_samples;
    float *H;//frequency response filter (magnitude based)
    float *W;//windowing function (time domain)
    float *work_buffer, **input, **overlap_accum;
    fftwf_complex *output_window;
    fftwf_plan forward_plan, inverse_plan;
    //size_t samplings;

    float *Hs[2];//thread updatable copies
    pa_aupdate *a_H;
    pa_memchunk conv_buffer;
    pa_memblockq *rendered_q;

    pa_dbus_protocol *dbus_protocol;
    char *dbus_path;
};

static const char* const valid_modargs[] = {
    "sink_name",
    "sink_properties",
    "master",
    "format",
    "rate",
    "channels",
    "channel_map",
    NULL
};

static uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p);
static void hanning_window(float *W, size_t window_size);
static void array_out(const char *name, float *a, size_t length);
static void process_samples(struct userdata *u);
static void input_buffer(struct userdata *u, pa_memchunk *in);

void dsp_logic(
    float * __restrict__ dst,
    float * __restrict__ src,
    float * __restrict__ overlap,
    const float * __restrict__ H,
    const float * __restrict__ W,
    fftwf_complex * __restrict__ output_window,
    struct userdata *u);

static void dbus_init(struct userdata *u);
static void dbus_done(struct userdata *u);
static void handle_get_all(DBusConnection *conn, DBusMessage *msg, void *_u);
static void get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u);
static void get_filter(DBusConnection *conn, DBusMessage *msg, void *_u);
static void set_filter(DBusConnection *conn, DBusMessage *msg, void *_u);

#define v_size 4
#define gettime(x) clock_gettime(CLOCK_MONOTONIC, &x)
#define tdiff(x, y) time_diff(&x, &y)
#define mround(x, y) (x % y == 0 ? x : ( x / y + 1) * y)

uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p)
{
    return ((timeA_p->tv_sec * 1000000000ULL) + timeA_p->tv_nsec) -
    ((timeB_p->tv_sec * 1000000000ULL) + timeB_p->tv_nsec);
}

static void hanning_window(float *W, size_t window_size){
    //h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2
    for(size_t i=0; i < window_size;++i){
        W[i] = (float).5*(1-cos(2*M_PI*i/(window_size+1)));
    }
}

static void fix_filter(float *H, size_t fft_size){
    //divide out the fft gain
    for(size_t i = 0; i < (fft_size / 2 + 1); ++i){
        H[i] /= fft_size;
    }
}

void array_out(const char *name, float *a, size_t length){
    FILE *p=fopen(name, "w");
    if(!p){
        pa_log("opening %s failed!", name);
        return;
    }
    for(size_t i = 0; i < length; ++i){
        fprintf(p, "%e,", a[i]);
        //if(i%1000==0){
        //    fprintf(p, "\n");
        //}
    }
    fprintf(p, "\n");
    fclose(p);
}


/* Called from I/O thread context */
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
    struct userdata *u = PA_SINK(o)->userdata;

    switch (code) {

        case PA_SINK_MESSAGE_GET_LATENCY: {
            pa_usec_t usec = 0;
            pa_sample_spec *ss=&u->sink->sample_spec;
            //size_t fs=pa_frame_size(&(u->sink->sample_spec));

            /* Get the latency of the master sink */
            if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0)
                usec = 0;

            //usec+=pa_bytes_to_usec(u->latency * fs, ss);
            //usec+=pa_bytes_to_usec(u->samples_gathered * fs, ss);
            usec += pa_bytes_to_usec(pa_memblockq_get_length(u->rendered_q), ss);
            /* Add the latency internal to our sink input on top */
            usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec);
            *((pa_usec_t*) data) = usec;
            return 0;
        }
    }

    return pa_sink_process_msg(o, code, data, offset, chunk);
}


/* Called from main context */
static int sink_set_state(pa_sink *s, pa_sink_state_t state) {
    struct userdata *u;

    pa_sink_assert_ref(s);
    pa_assert_se(u = s->userdata);

    if (PA_SINK_IS_LINKED(state) &&
        u->sink_input &&
        PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))

        pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED);

    return 0;
}

/* Called from I/O thread context */
static void sink_request_rewind(pa_sink *s) {
    struct userdata *u;

    pa_sink_assert_ref(s);
    pa_assert_se(u = s->userdata);

    /* Just hand this one over to the master sink */
    pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->rendered_q), TRUE, FALSE, FALSE);
}

/* Called from I/O thread context */
static void sink_update_requested_latency(pa_sink *s) {
    struct userdata *u;

    pa_sink_assert_ref(s);
    pa_assert_se(u = s->userdata);

    /* Just hand this one over to the master sink */
    pa_sink_input_set_requested_latency_within_thread(
            u->sink_input,
            pa_sink_get_requested_latency_within_thread(s));
}

static void process_samples(struct userdata *u){
    pa_memchunk tchunk;
    size_t fs=pa_frame_size(&(u->sink->sample_spec));
    while(u->samples_gathered >= u->R){
        float *dst;
        //pa_log("iter gathered: %ld", u->samples_gathered);
        //pa_memblockq_drop(u->rendered_q, tchunk.length);
        tchunk.index=0;
        tchunk.length=u->R*fs;
        tchunk.memblock=pa_memblock_new(u->core->mempool, tchunk.length);
        dst=((float*)pa_memblock_acquire(tchunk.memblock));
        for(size_t c=0;c < u->channels; c++) {
            dsp_logic(
                u->work_buffer,
                u->input[c],
                u->overlap_accum[c],
                u->H,
                u->W,
                u->output_window,
                u
            );
            pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst + c, fs, u->work_buffer, sizeof(float), u->R);
        }
        pa_memblock_release(tchunk.memblock);
        pa_memblockq_push(u->rendered_q, &tchunk);
        pa_memblock_unref(tchunk.memblock);
        u->samples_gathered-=u->R;
    }
}

typedef float v4sf __attribute__ ((__aligned__(v_size*sizeof(float))));
typedef union float_vector {
    float f[v_size];
    v4sf v;
#ifdef __SSE2__
    __m128 m;
#endif
} float_vector_t;

//reference implementation
void dsp_logic(
    float * __restrict__ dst,//used as a temp array too, needs to be fft_length!
    float * __restrict__ src,/*input data w/ overlap at start,
                               *automatically cycled in routine
                               */
    float * __restrict__ overlap,//The size of the overlap
    const float * __restrict__ H,//The freq. magnitude scalers filter
    const float * __restrict__ W,//The windowing function
    fftwf_complex * __restrict__ output_window,//The transformed window'd src
    struct userdata *u){
    //use a linear-phase sliding STFT and overlap-add method (for each channel)
    //zero padd the data
    memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
    //window the data
    for(size_t j = 0;j < u->window_size; ++j){
        dst[j] = W[j] * src[j];
    }
    //Processing is done here!
    //do fft
    fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
    //perform filtering
    for(size_t j = 0;j < u->fft_size / 2 + 1; ++j){
        u->output_window[j][0] *= u->H[j];
        u->output_window[j][1] *= u->H[j];
    }
    //inverse fft
    fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
    ////debug: tests overlaping add
    ////and negates ALL PREVIOUS processing
    ////yields a perfect reconstruction if COLA is held
    //for(size_t j = 0; j < u->window_size; ++j){
    //    u->work_buffer[j] = u->W[j] * u->input[c][j];
    //}

    //overlap add and preserve overlap component from this window (linear phase)
    for(size_t j = 0;j < u->overlap_size; ++j){
        u->work_buffer[j] += overlap[j];
        overlap[j] = dst[u->R+j];
    }
    ////debug: tests if basic buffering works
    ////shouldn't modify the signal AT ALL (beyond roundoff)
    //for(size_t j = 0; j < u->window_size;++j){
    //    u->work_buffer[j] = u->input[c][j];
    //}

    //preseve the needed input for the next window's overlap
    memmove(src, src+u->R,
        ((u->overlap_size + u->samples_gathered) - u->R)*sizeof(float)
    );
}

////regardless of sse enabled, the loops in here assume
////16 byte aligned addresses and memory allocations divisible by v_size
//void dsp_logic(
//    float * __restrict__ dst,//used as a temp array too, needs to be fft_length!
//    float * __restrict__ src,/*input data w/ overlap at start,
//                               *automatically cycled in routine
//                               */
//    float * __restrict__ overlap,//The size of the overlap
//    const float * __restrict__ H,//The freq. magnitude scalers filter
//    const float * __restrict__ W,//The windowing function
//    fftwf_complex * __restrict__ output_window,//The transformed window'd src
//    struct userdata *u){//Collection of constants
//
//    const size_t window_size = mround(u->window_size,v_size);
//    const size_t fft_h = mround(u->fft_size / 2 + 1, v_size / 2);
//    //const size_t R = mround(u->R, v_size);
//    const size_t overlap_size = mround(u->overlap_size, v_size);
//
//    //assert(u->samples_gathered >= u->R);
//    //zero out the bit beyond the real overlap so we don't add garbage
//    for(size_t j = overlap_size; j > u->overlap_size; --j){
//       overlap[j-1] = 0;
//    }
//    //use a linear-phase sliding STFT and overlap-add method
//    //zero padd the data
//    memset(dst + u->window_size, 0, (u->fft_size - u->window_size)*sizeof(float));
//    //window the data
//    for(size_t j = 0; j < window_size; j += v_size){
//        //dst[j] = W[j]*src[j];
//        float_vector_t *d = (float_vector_t*) (dst+j);
//        float_vector_t *w = (float_vector_t*) (W+j);
//        float_vector_t *s = (float_vector_t*) (src+j);
//#if __SSE2__
//        d->m = _mm_mul_ps(w->m, s->m);
//#else
//        d->v = w->v * s->v;
//#endif
//    }
//    //Processing is done here!
//    //do fft
//    fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
//
//
//    //perform filtering - purely magnitude based
//    for(size_t j = 0;j < fft_h; j+=v_size/2){
//        //output_window[j][0]*=H[j];
//        //output_window[j][1]*=H[j];
//        float_vector_t *d = (float_vector_t*)(output_window+j);
//        float_vector_t h;
//        h.f[0] = h.f[1] = H[j];
//        h.f[2] = h.f[3] = H[j+1];
//#if __SSE2__
//        d->m = _mm_mul_ps(d->m, h.m);
//#else
//        d->v = d->v*h->v;
//#endif
//    }
//
//
//    //inverse fft
//    fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
//
//    ////debug: tests overlaping add
//    ////and negates ALL PREVIOUS processing
//    ////yields a perfect reconstruction if COLA is held
//    //for(size_t j = 0; j < u->window_size; ++j){
//    //    dst[j] = W[j]*src[j];
//    //}
//
//    //overlap add and preserve overlap component from this window (linear phase)
//    for(size_t j = 0; j < overlap_size; j+=v_size){
//        //dst[j]+=overlap[j];
//        //overlap[j]+=dst[j+R];
//        float_vector_t *d = (float_vector_t*)(dst+j);
//        float_vector_t *o = (float_vector_t*)(overlap+j);
//#if __SSE2__
//        d->m = _mm_add_ps(d->m, o->m);
//        o->m = ((float_vector_t*)(dst+u->R+j))->m;
//#else
//        d->v = d->v+o->v;
//        o->v = ((float_vector_t*)(dst+u->R+j))->v;
//#endif
//    }
//    //memcpy(overlap, dst+u->R, u->overlap_size*sizeof(float));
//
//    //////debug: tests if basic buffering works
//    //////shouldn't modify the signal AT ALL (beyond roundoff)
//    //for(size_t j = 0; j < u->window_size; ++j){
//    //    dst[j] = src[j];
//    //}
//
//    //preseve the needed input for the next window's overlap
//    memmove(src, src+u->R,
//        ((u->overlap_size+u->samples_gathered)+-u->R)*sizeof(float)
//    );
//}



void input_buffer(struct userdata *u, pa_memchunk *in){
    size_t fs = pa_frame_size(&(u->sink->sample_spec));
    size_t samples = in->length/fs;
    pa_assert_se(samples <= u->target_samples-u->samples_gathered);
    float *src = (float*) ((uint8_t*) pa_memblock_acquire(in->memblock) + in->index);
    for(size_t c = 0; c < u->channels; c++) {
        //buffer with an offset after the overlap from previous
        //iterations
        pa_assert_se(
            u->input[c]+u->overlap_size+u->samples_gathered+samples <= u->input[c]+u->overlap_size+u->target_samples
        );
        pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input[c]+u->overlap_size+u->samples_gathered, sizeof(float), src + c, fs, samples);
    }
    u->samples_gathered+=samples;
    pa_memblock_release(in->memblock);
}

/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
    struct userdata *u;
    pa_sink_input_assert_ref(i);
    pa_assert(chunk);
    pa_assert_se(u = i->userdata);
    pa_assert_se(u->sink);
    size_t fs = pa_frame_size(&(u->sink->sample_spec));
    //size_t samples_requested = nbytes/fs;
    size_t buffered_samples = pa_memblockq_get_length(u->rendered_q)/fs;
    pa_memchunk tchunk;
    chunk->memblock = NULL;
    if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
        return -1;

    //pa_log("start output-buffered %ld, input-buffered %ld, requested %ld",buffered_samples,u->samples_gathered,samples_requested);
    struct timespec start, end;

    if(pa_memblockq_peek(u->rendered_q, &tchunk)==0){
        *chunk = tchunk;
        pa_memblockq_drop(u->rendered_q, chunk->length);
        return 0;
    }

    /*
        Set the H filter
    */
    unsigned H_i = pa_aupdate_read_begin(u->a_H);
    u->H = u->Hs[H_i];
    
    do{
        pa_memchunk *buffer;
        size_t input_remaining = u->target_samples-u->samples_gathered;
        pa_assert(input_remaining>0);
        //collect samples

        buffer = &u->conv_buffer;
        buffer->length = input_remaining*fs;
        buffer->index = 0;
        pa_memblock_ref(buffer->memblock);
        pa_sink_render_into(u->sink, buffer);

        //if(u->sink->thread_info.rewind_requested)
        //    sink_request_rewind(u->sink);

        //pa_memchunk p;
        //buffer = &p;
        //pa_sink_render(u->sink, u->R*fs, buffer);
        //buffer->length = PA_MIN(input_remaining*fs, buffer->length);

        //debug block
        //pa_memblockq_push(u->rendered_q, buffer);
        //pa_memblock_unref(buffer->memblock);
        //goto END;

        //pa_log("asked for %ld input samples, got %ld samples",input_remaining,buffer->length/fs);
        //copy new input
        gettime(start);
        input_buffer(u, buffer);
        gettime(end);
        //pa_log("Took %0.5f seconds to setup", tdiff(end, start)*1e-9);

        pa_memblock_unref(buffer->memblock);

        pa_assert_se(u->fft_size >= u->window_size);
        pa_assert_se(u->R < u->window_size);
        //process every complete block on hand

        gettime(start);
        process_samples(u);
        gettime(end);
        //pa_log("Took %0.5f seconds to process", tdiff(end, start)*1e-9);

        buffered_samples = pa_memblockq_get_length(u->rendered_q)/fs;
    }while(buffered_samples < u->R);

    //deque from rendered_q and output
    pa_assert_se(pa_memblockq_peek(u->rendered_q, &tchunk)==0);
    *chunk = tchunk;
    pa_memblockq_drop(u->rendered_q, chunk->length);
    pa_assert_se(chunk->memblock);
    //pa_log("gave %ld", chunk->length/fs);
    //pa_log("end pop");
    return 0;
}

/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
    struct userdata *u;
    size_t amount = 0;

    pa_log_debug("Rewind callback!");
    pa_sink_input_assert_ref(i);
    pa_assert_se(u = i->userdata);

    if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
        return;

    if (u->sink->thread_info.rewind_nbytes > 0) {
        size_t max_rewrite;

        max_rewrite = nbytes + pa_memblockq_get_length(u->rendered_q);
        amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite);
        u->sink->thread_info.rewind_nbytes = 0;

        if (amount > 0) {
            //pa_sample_spec *ss = &u->sink->sample_spec;
            pa_memblockq_seek(u->rendered_q, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
            pa_log_debug("Resetting equalizer");
            u->samples_gathered = 0;
        }
    }

    pa_sink_process_rewind(u->sink, amount);
    pa_memblockq_rewind(u->rendered_q, nbytes);
}

/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
    struct userdata *u;

    pa_sink_input_assert_ref(i);
    pa_assert_se(u = i->userdata);

    if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
        return;

    pa_memblockq_set_maxrewind(u->rendered_q, nbytes);
    pa_sink_set_max_rewind_within_thread(u->sink, nbytes);
}

/* Called from I/O thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
    struct userdata *u;

    pa_sink_input_assert_ref(i);
    pa_assert_se(u = i->userdata);

    if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
        return;

    size_t fs = pa_frame_size(&(u->sink->sample_spec));
    //pa_sink_set_max_request_within_thread(u->sink, nbytes);
    pa_sink_set_max_request_within_thread(u->sink, u->R*fs);
}

/* Called from I/O thread context */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
    struct userdata *u;

    pa_sink_input_assert_ref(i);
    pa_assert_se(u = i->userdata);

    if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
        return;

    size_t fs = pa_frame_size(&(u->sink->sample_spec));
    //pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs);
    pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs );
    //pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
}

/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
    struct userdata *u;

    pa_sink_input_assert_ref(i);
    pa_assert_se(u = i->userdata);

    if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
        return;

    pa_sink_detach_within_thread(u->sink);
    pa_sink_set_asyncmsgq(u->sink, NULL);
    pa_sink_set_rtpoll(u->sink, NULL);
}

/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
    struct userdata *u;

    pa_sink_input_assert_ref(i);
    pa_assert_se(u = i->userdata);

    if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
        return;

    pa_sink_set_asyncmsgq(u->sink, i->sink->asyncmsgq);
    pa_sink_set_rtpoll(u->sink, i->sink->rtpoll);
    pa_sink_attach_within_thread(u->sink);

    size_t fs = pa_frame_size(&(u->sink->sample_spec));
    //pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs);
    //pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->master->thread_info.max_latency);
    //TODO: setting this guy minimizes drop outs but doesn't get rid
    //of them completely, figure out why
    pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs);
    //TODO: this guy causes dropouts constantly+rewinds, it's unusable
    //pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->master->thread_info.max_latency);
}

/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
    struct userdata *u;

    pa_sink_input_assert_ref(i);
    pa_assert_se(u = i->userdata);

    pa_sink_unlink(u->sink);
    pa_sink_input_unlink(u->sink_input);

    pa_sink_unref(u->sink);
    u->sink = NULL;
    pa_sink_input_unref(u->sink_input);
    u->sink_input = NULL;

    pa_module_unload_request(u->module, TRUE);
}

/* Called from IO thread context */
static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
    struct userdata *u;

    pa_sink_input_assert_ref(i);
    pa_assert_se(u = i->userdata);

    /* If we are added for the first time, ask for a rewinding so that
     * we are heard right-away. */
    if (PA_SINK_INPUT_IS_LINKED(state) &&
        i->thread_info.state == PA_SINK_INPUT_INIT) {
        pa_log_debug("Requesting rewind due to state change.");
        pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE);
    }
}

/* Called from main context */
static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
    struct userdata *u;

    pa_sink_input_assert_ref(i);
    pa_assert_se(u = i->userdata);

    return u->sink != dest;
}


//ensure's memory allocated is a multiple of v_size
//and aligned
static void * alloc(size_t x,size_t s){
    size_t f = mround(x*s, sizeof(float)*v_size);
    pa_assert_se(f >= x*s);
    //printf("requested %ld floats=%ld bytes, rem=%ld\n", x, x*sizeof(float), x*sizeof(float)%16);
    //printf("giving %ld floats=%ld bytes, rem=%ld\n", f, f*sizeof(float), f*sizeof(float)%16);
    float *t = fftwf_malloc(f);
    memset(t, 0, f);
    return t;
}

int pa__init(pa_module*m) {
    struct userdata *u;
    pa_sample_spec ss;
    pa_channel_map map;
    pa_modargs *ma;
    const char *z;
    pa_sink *master;
    pa_sink_input_new_data sink_input_data;
    pa_sink_new_data sink_data;
    pa_bool_t *use_default = NULL;
    size_t fs;

    pa_assert(m);

    if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
        pa_log("Failed to parse module arguments.");
        goto fail;
    }

    if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) {
        pa_log("Master sink not found");
        goto fail;
    }

    ss = master->sample_spec;
    ss.format = PA_SAMPLE_FLOAT32;
    map = master->channel_map;
    if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
        pa_log("Invalid sample format specification or channel map");
        goto fail;
    }
    fs = pa_frame_size(&ss);

    u = pa_xnew0(struct userdata, 1);
    u->core = m->core;
    u->module = m;
    m->userdata = u;
    u->master = master;
    u->sink = NULL;
    u->sink_input = NULL;

    u->channels = ss.channels;
    u->fft_size = pow(2, ceil(log(ss.rate)/log(2)));
    pa_log("fft size: %ld", u->fft_size);
    u->window_size = 7999;
    u->R = (u->window_size+1)/2;
    u->overlap_size = u->window_size-u->R;
    u->target_samples = 1*u->R;
    u->samples_gathered = 0;
    u->max_output = pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss);
    u->rendered_q = pa_memblockq_new(0,  MEMBLOCKQ_MAXLENGTH, u->target_samples*fs, fs, fs, 0, 0, NULL);
    u->a_H = pa_aupdate_new();
    u->conv_buffer.memblock = pa_memblock_new(u->core->mempool, u->target_samples*fs);
    u->latency = u->R;
    for(size_t i = 0; i < 2; ++i){
        u->Hs[i] = alloc((u->fft_size / 2 + 1), sizeof(float));
    }
    u->W = alloc(u->window_size, sizeof(float));
    u->work_buffer = alloc(u->fft_size, sizeof(float));
    memset(u->work_buffer, 0, u->fft_size*sizeof(float));
    u->input = (float **)pa_xmalloc0(sizeof(float *)*u->channels);
    u->overlap_accum = (float **)pa_xmalloc0(sizeof(float *)*u->channels);
    for(size_t c = 0; c < u->channels; ++c){
        u->input[c] = alloc(u->overlap_size+u->target_samples, sizeof(float));
        pa_assert_se(u->input[c]);
        memset(u->input[c], 0, (u->overlap_size+u->target_samples)*sizeof(float));
        pa_assert_se(u->input[c]);
        u->overlap_accum[c] = alloc(u->overlap_size, sizeof(float));
        pa_assert_se(u->overlap_accum[c]);
        memset(u->overlap_accum[c], 0, u->overlap_size*sizeof(float));
    }
    u->output_window = alloc((u->fft_size / 2 + 1), sizeof(fftwf_complex));
    u->forward_plan = fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_MEASURE);
    u->inverse_plan = fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_MEASURE);

    hanning_window(u->W, u->window_size);

    unsigned H_i = pa_aupdate_write_begin(u->a_H);
    u->H = u->Hs[H_i];
    for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){
        u->H[i] = 1.0;
    }

    //TODO cut this out and leave it for the client side
    //const int freqs[] = {0,25,50,100,200,300,400,800,1500,
    //    2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,
    //    13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX};
    //const float coefficients[] = {1,1,1,1,1,1,1,1,1,1,
    //    1,1,1,1,1,1,1,1,
    //    1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};
    //const size_t ncoefficients = sizeof(coefficients)/sizeof(float);
    //pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float));
    //float *freq_translated = (float *) pa_xmalloc0(sizeof(float)*(ncoefficients));
    //freq_translated[0] = 1;
    ////Translate the frequencies in their natural sampling rate to the new sampling rate frequencies
    //for(size_t i = 1; i < ncoefficients-1; ++i){
    //    freq_translated[i] = ((float)freqs[i]*u->fft_size)/ss.rate;
    //    //pa_log("i: %ld: %d , %g",i, freqs[i], freq_translated[i]);
    //    pa_assert_se(freq_translated[i] >= freq_translated[i-1]);
    //}
    //freq_translated[ncoefficients-1] = FLT_MAX;
    //
    ////Interpolate the specified frequency band values
    //u->H[0] = 1;
    //for(size_t i = 1, j = 0; i < (u->fft_size / 2 + 1); ++i){
    //    pa_assert_se(j < ncoefficients);
    //    //max frequency range passed, consider the rest as one band
    //    if(freq_translated[j+1] >= FLT_MAX){
    //        for(; i < (u->fft_size / 2 + 1); ++i){
    //            u->H[i] = coefficients[j];
    //        }
    //        break;
    //    }
    //    //pa_log("i: %d, j: %d, freq: %f", i, j, freq_translated[j]);
    //    //pa_log("interp: %0.4f %0.4f", freq_translated[j], freq_translated[j+1]);
    //    pa_assert_se(freq_translated[j] < freq_translated[j+1]);
    //    pa_assert_se(i >= freq_translated[j]);
    //    pa_assert_se(i <= freq_translated[j+1]);
    //    //bilinear-inerpolation of coefficients specified
    //    float c0 = (i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]);
    //    pa_assert_se(c0 >= 0&&c0 <= 1.0);
    //    u->H[i] = ((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]);
    //    pa_assert_se(u->H[i]>0);
    //    while(i >= floor(freq_translated[j+1])){
    //        j++;
    //    }
    //}
    //pa_xfree(freq_translated);
    fix_filter(u->H, u->fft_size);
    pa_aupdate_write_swap(u->a_H);
    pa_aupdate_write_end(u->a_H);


    /* Create sink */
    pa_sink_new_data_init(&sink_data);
    sink_data.driver = __FILE__;
    sink_data.module = m;
    if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
        sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name);
    sink_data.namereg_fail = FALSE;
    pa_sink_new_data_set_sample_spec(&sink_data, &ss);
    pa_sink_new_data_set_channel_map(&sink_data, &map);
    z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
    pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer");
    pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
    pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");

    if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
        pa_log("Invalid properties");
        pa_sink_new_data_done(&sink_data);
        goto fail;
    }

    u->sink = pa_sink_new(m->core, &sink_data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY);
    pa_sink_new_data_done(&sink_data);

    if (!u->sink) {
        pa_log("Failed to create sink.");
        goto fail;
    }

    u->sink->parent.process_msg = sink_process_msg;
    u->sink->set_state = sink_set_state;
    u->sink->update_requested_latency = sink_update_requested_latency;
    u->sink->request_rewind = sink_request_rewind;
    u->sink->userdata = u;

    pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
    pa_sink_set_rtpoll(u->sink, master->rtpoll);
    pa_sink_set_max_request(u->sink, u->R*fs);
    //pa_sink_set_fixed_latency(u->sink, pa_bytes_to_usec(u->R*fs, &ss));

    /* Create sink input */
    pa_sink_input_new_data_init(&sink_input_data);
    sink_input_data.driver = __FILE__;
    sink_input_data.module = m;
    sink_input_data.sink = u->master;
    pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream");
    pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
    pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
    pa_sink_input_new_data_set_channel_map(&sink_input_data, &map);

    pa_sink_input_new(&u->sink_input, m->core, &sink_input_data, PA_SINK_INPUT_DONT_MOVE);
    pa_sink_input_new_data_done(&sink_input_data);

    if (!u->sink_input)
        goto fail;

    u->sink_input->pop = sink_input_pop_cb;
    u->sink_input->process_rewind = sink_input_process_rewind_cb;
    u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
    u->sink_input->update_max_request = sink_input_update_max_request_cb;
    u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
    u->sink_input->kill = sink_input_kill_cb;
    u->sink_input->attach = sink_input_attach_cb;
    u->sink_input->detach = sink_input_detach_cb;
    u->sink_input->state_change = sink_input_state_change_cb;
    u->sink_input->may_move_to = sink_input_may_move_to_cb;
    u->sink_input->userdata = u;

    pa_sink_put(u->sink);
    pa_sink_input_put(u->sink_input);

    pa_modargs_free(ma);

    pa_xfree(use_default);

    dbus_init(u);

    return 0;

fail:
    if (ma)
        pa_modargs_free(ma);

    pa_xfree(use_default);

    pa__done(m);

    return -1;
}

int pa__get_n_used(pa_module *m) {
    struct userdata *u;

    pa_assert(m);
    pa_assert_se(u = m->userdata);

    return pa_sink_linked_by(u->sink);
}

void pa__done(pa_module*m) {
    struct userdata *u;

    pa_assert(m);

    if (!(u = m->userdata))
        return;
    dbus_done(u);

    if (u->sink) {
        pa_sink_unlink(u->sink);
        pa_sink_unref(u->sink);
    }

    if (u->sink_input) {
        pa_sink_input_unlink(u->sink_input);
        pa_sink_input_unref(u->sink_input);
    }

    if(u->conv_buffer.memblock)
        pa_memblock_unref(u->conv_buffer.memblock);

    if (u->rendered_q)
        pa_memblockq_free(u->rendered_q);

    fftwf_destroy_plan(u->inverse_plan);
    fftwf_destroy_plan(u->forward_plan);
    pa_xfree(u->output_window);
    for(size_t c=0; c < u->channels; ++c){
        pa_xfree(u->overlap_accum[c]);
        pa_xfree(u->input[c]);
    }
    pa_xfree(u->overlap_accum);
    pa_xfree(u->input);
    pa_xfree(u->work_buffer);
    pa_xfree(u->W);
    for(size_t i = 0; i < 2; ++i){
        pa_xfree(u->Hs[i]);
    }

    pa_xfree(u);
}

enum property_handler_index {
    PROPERTY_HANDLER_N_COEFS,
    PROPERTY_HANDLER_COEFS,
    PROPERTY_HANDLER_MAX
};

static pa_dbus_property_handler property_handlers[PROPERTY_HANDLER_MAX]={
    [PROPERTY_HANDLER_N_COEFS]{.property_name="n_filter_coefficients",.type="u",.get_cb=get_n_coefs,.set_cb=NULL},
    [PROPERTY_HANDLER_COEFS]{.property_name="filter_coefficients",.type="ai",.get_cb=get_filter,.set_cb=set_filter}
};

//static pa_dbus_arg_info new_equalizer_args[] = { { "path","o",NULL} };
//static pa_dbus_signal_info signals[SIGNAL_MAX] = {
//    [SIGNAL_NEW_EQUALIZER]={.name="NewEqualizer",.arguments=new_equalizer_args,.n_arguments=1}
//};

#define EXTNAME "org.PulseAudio.Ext.Equalizing1"

static pa_dbus_interface_info interface_info={
    .name=EXTNAME ".Equalizer",
    .method_handlers=NULL,
    .n_method_handlers=0,
    .property_handlers=property_handlers,
    .n_property_handlers=PROPERTY_HANDLER_MAX,
    .get_all_properties_cb=handle_get_all,
    .signals=NULL,
    .n_signals=0
};


void dbus_init(struct userdata *u){
    u->dbus_protocol=pa_dbus_protocol_get(u->core);
    u->dbus_path=pa_sprintf_malloc("/org/pulseaudio/core1/sink%d", u->sink->index);

    pa_dbus_protocol_add_interface(u->dbus_protocol, u->dbus_path, &interface_info, u);
    pa_dbus_protocol_register_extension(u->dbus_protocol, EXTNAME);
}

void dbus_done(struct userdata *u){
    pa_dbus_protocol_unregister_extension(u->dbus_protocol, EXTNAME);
    pa_dbus_protocol_remove_interface(u->dbus_protocol, u->dbus_path, EXTNAME);
    
    pa_xfree(u->dbus_path);
    pa_dbus_protocol_unref(u->dbus_protocol);
}

void get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u){
    pa_assert(conn);
    pa_assert(msg);
    pa_assert(_u);

    struct userdata *u=(struct userdata *)_u;

    uint32_t n_coefs=(uint32_t)(u->fft_size / 2 + 1);
    pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &n_coefs);
}

void get_filter(DBusConnection *conn, DBusMessage *msg, void *_u){
    pa_assert(conn);
    pa_assert(msg);
    pa_assert(_u);

    struct userdata *u=(struct userdata *)_u;
    
    unsigned n_coefs=(unsigned)(u->fft_size / 2 + 1);
    double *H_=(double *)pa_xmalloc0(n_coefs*sizeof(double));
    
    unsigned H_i=pa_aupdate_read_begin(u->a_H);
    float *H=u->Hs[H_i];
    for(size_t i = 0;i < u->fft_size / 2 + 1; ++i){
        H_[i]=H[i];
    }
    pa_aupdate_read_end(u->a_H);
    pa_dbus_send_basic_array_variant_reply(conn, msg, DBUS_TYPE_DOUBLE, &H_, n_coefs);
    pa_xfree(H_);
}

void set_filter(DBusConnection *conn, DBusMessage *msg, void *_u){
    pa_assert(conn);
    pa_assert(msg);
    pa_assert(_u);

    struct userdata *u=(struct userdata *)_u;
    double *H_;
    unsigned _n_coefs;
    pa_dbus_get_fixed_array_set_property_arg(conn, msg, DBUS_TYPE_DOUBLE, &H_, &_n_coefs);
    if(_n_coefs!=u->fft_size / 2 + 1){
        pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "This filter takes exactly %ld coefficients, you gave %d", u->fft_size / 2 + 1, _n_coefs);
        return;
    }
    unsigned H_i = pa_aupdate_write_begin(u->a_H);
    float *H = u->Hs[H_i];
    for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){
        H[i] = (float)H_[i];
    }
    pa_aupdate_write_swap(u->a_H);
    pa_aupdate_write_end(u->a_H);

    pa_dbus_send_empty_reply(conn, msg);
}

void handle_get_all(DBusConnection *conn, DBusMessage *msg, void *_u){
    pa_assert(conn);
    pa_assert(msg);
    pa_assert(_u);

    struct userdata *u = (struct userdata *)_u;
    DBusMessage *reply = NULL;
    DBusMessageIter msg_iter, dict_iter;

    int n_coefs=(unsigned)(u->fft_size / 2 + 1);
    double *H_=(double *)pa_xmalloc0(n_coefs*sizeof(double));
    
    unsigned H_i=pa_aupdate_read_begin(u->a_H);
    float *H=u->Hs[H_i];
    for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){
        H_[i] = H[i];
    }
    pa_aupdate_read_end(u->a_H);

    pa_assert_se((reply = dbus_message_new_method_return(msg)));
    dbus_message_iter_init_append(reply, &msg_iter);
    pa_assert_se(dbus_message_iter_open_container(&msg_iter, DBUS_TYPE_ARRAY, "{sv}", &dict_iter));

    pa_dbus_append_basic_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_N_COEFS].property_name, DBUS_TYPE_UINT32, &n_coefs);
    pa_dbus_append_basic_array_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_COEFS].property_name, DBUS_TYPE_DOUBLE, H_, n_coefs);

    pa_assert_se(dbus_message_iter_close_container(&msg_iter, &dict_iter));
    pa_assert_se(dbus_connection_send(conn, reply, NULL));
    dbus_message_unref(reply);

    pa_xfree(H_);
}