1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
|
/***
This file is part of PulseAudio.
Copyright 2007 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <pulse/sample.h>
#include <pulse/xmalloc.h>
#include <pulsecore/macro.h>
#include "time-smoother.h"
#define HISTORY_MAX 64
/*
* Implementation of a time smoothing algorithm to synchronize remote
* clocks to a local one. Evens out noise, adjusts to clock skew and
* allows cheap estimations of the remote time while clock updates may
* be seldom and recieved in non-equidistant intervals.
*
* Basically, we estimate the gradient of received clock samples in a
* certain history window (of size 'history_time') with linear
* regression. With that info we estimate the remote time in
* 'adjust_time' ahead and smoothen our current estimation function
* towards that point with a 3rd order polynomial interpolation with
* fitting derivatives. (more or less a b-spline)
*
* The larger 'history_time' is chosen the better we will surpress
* noise -- but we'll adjust to clock skew slower..
*
* The larger 'adjust_time' is chosen the smoother our estimation
* function will be -- but we'll adjust to clock skew slower, too.
*
* If 'monotonic' is TRUE the resulting estimation function is
* guaranteed to be monotonic.
*/
struct pa_smoother {
pa_usec_t adjust_time, history_time;
pa_usec_t time_offset;
pa_usec_t px, py; /* Point p, where we want to reach stability */
double dp; /* Gradient we want at point p */
pa_usec_t ex, ey; /* Point e, which we estimated before and need to smooth to */
double de; /* Gradient we estimated for point e */
pa_usec_t ry; /* The original y value for ex */
/* History of last measurements */
pa_usec_t history_x[HISTORY_MAX], history_y[HISTORY_MAX];
unsigned history_idx, n_history;
/* To even out for monotonicity */
pa_usec_t last_y, last_x;
/* Cached parameters for our interpolation polynomial y=ax^3+b^2+cx */
double a, b, c;
pa_bool_t abc_valid;
pa_bool_t monotonic:1;
pa_bool_t paused:1;
pa_usec_t pause_time;
unsigned min_history;
};
pa_smoother* pa_smoother_new(pa_usec_t adjust_time, pa_usec_t history_time, pa_bool_t monotonic, unsigned min_history) {
pa_smoother *s;
pa_assert(adjust_time > 0);
pa_assert(history_time > 0);
pa_assert(min_history >= 2);
pa_assert(min_history <= HISTORY_MAX);
s = pa_xnew(pa_smoother, 1);
s->adjust_time = adjust_time;
s->history_time = history_time;
s->time_offset = 0;
s->monotonic = monotonic;
s->px = s->py = 0;
s->dp = 1;
s->ex = s->ey = s->ry = 0;
s->de = 1;
s->history_idx = 0;
s->n_history = 0;
s->last_y = s->last_x = 0;
s->abc_valid = FALSE;
s->paused = FALSE;
s->min_history = min_history;
return s;
}
void pa_smoother_free(pa_smoother* s) {
pa_assert(s);
pa_xfree(s);
}
#define REDUCE(x) \
do { \
x = (x) % HISTORY_MAX; \
} while(FALSE)
#define REDUCE_INC(x) \
do { \
x = ((x)+1) % HISTORY_MAX; \
} while(FALSE)
static void drop_old(pa_smoother *s, pa_usec_t x) {
/* Drop items from history which are too old, but make sure to
* always keep min_history in the history */
while (s->n_history > s->min_history) {
if (s->history_x[s->history_idx] + s->history_time >= x)
/* This item is still valid, and thus all following ones
* are too, so let's quit this loop */
break;
/* Item is too old, let's drop it */
REDUCE_INC(s->history_idx);
s->n_history --;
}
}
static void add_to_history(pa_smoother *s, pa_usec_t x, pa_usec_t y) {
unsigned j, i;
pa_assert(s);
/* First try to update an existing history entry */
i = s->history_idx;
for (j = s->n_history; j > 0; j--) {
if (s->history_x[i] == x) {
s->history_y[i] = y;
return;
}
REDUCE_INC(i);
}
/* Drop old entries */
drop_old(s, x);
/* Calculate position for new entry */
j = s->history_idx + s->n_history;
REDUCE(j);
/* Fill in entry */
s->history_x[j] = x;
s->history_y[j] = y;
/* Adjust counter */
s->n_history ++;
/* And make sure we don't store more entries than fit in */
if (s->n_history > HISTORY_MAX) {
s->history_idx += s->n_history - HISTORY_MAX;
REDUCE(s->history_idx);
s->n_history = HISTORY_MAX;
}
}
static double avg_gradient(pa_smoother *s, pa_usec_t x) {
unsigned i, j, c = 0;
int64_t ax = 0, ay = 0, k, t;
double r;
/* Too few measurements, assume gradient of 1 */
if (s->n_history < s->min_history)
return 1;
/* First, calculate average of all measurements */
i = s->history_idx;
for (j = s->n_history; j > 0; j--) {
ax += (int64_t) s->history_x[i];
ay += (int64_t) s->history_y[i];
c++;
REDUCE_INC(i);
}
pa_assert(c >= s->min_history);
ax /= c;
ay /= c;
/* Now, do linear regression */
k = t = 0;
i = s->history_idx;
for (j = s->n_history; j > 0; j--) {
int64_t dx, dy;
dx = (int64_t) s->history_x[i] - ax;
dy = (int64_t) s->history_y[i] - ay;
k += dx*dy;
t += dx*dx;
REDUCE_INC(i);
}
r = (double) k / (double) t;
return (s->monotonic && r < 0) ? 0 : r;
}
static void calc_abc(pa_smoother *s) {
pa_usec_t ex, ey, px, py;
int64_t kx, ky;
double de, dp;
pa_assert(s);
if (s->abc_valid)
return;
/* We have two points: (ex|ey) and (px|py) with two gradients at
* these points de and dp. We do a polynomial
* interpolation of degree 3 with these 6 values */
ex = s->ex; ey = s->ey;
px = s->px; py = s->py;
de = s->de; dp = s->dp;
pa_assert(ex < px);
/* To increase the dynamic range and symplify calculation, we
* move these values to the origin */
kx = (int64_t) px - (int64_t) ex;
ky = (int64_t) py - (int64_t) ey;
/* Calculate a, b, c for y=ax^3+bx^2+cx */
s->c = de;
s->b = (((double) (3*ky)/ (double) kx - dp - (double) (2*de))) / (double) kx;
s->a = (dp/(double) kx - 2*s->b - de/(double) kx) / (double) (3*kx);
s->abc_valid = TRUE;
}
static void estimate(pa_smoother *s, pa_usec_t x, pa_usec_t *y, double *deriv) {
pa_assert(s);
pa_assert(y);
if (x >= s->px) {
int64_t t;
/* The requested point is right of the point where we wanted
* to be on track again, thus just linearly estimate */
t = (int64_t) s->py + (int64_t) (s->dp * (double) (x - s->px));
if (t < 0)
t = 0;
*y = (pa_usec_t) t;
if (deriv)
*deriv = s->dp;
} else {
double tx, ty;
/* Ok, we're not yet on track, thus let's interpolate, and
* make sure that the first derivative is smooth */
calc_abc(s);
tx = (double) x;
/* Move to origin */
tx -= (double) s->ex;
/* Horner scheme */
ty = (tx * (s->c + tx * (s->b + tx * s->a)));
/* Move back from origin */
ty += (double) s->ey;
*y = ty >= 0 ? (pa_usec_t) ty : 0;
/* Horner scheme */
if (deriv)
*deriv = s->c + (tx * (s->b*2 + tx * s->a*3));
}
/* Guarantee monotonicity */
if (s->monotonic) {
if (deriv && *deriv < 0)
*deriv = 0;
}
}
void pa_smoother_put(pa_smoother *s, pa_usec_t x, pa_usec_t y) {
pa_usec_t ney;
double nde;
pa_bool_t is_new;
pa_assert(s);
/* Fix up x value */
if (s->paused)
x = s->pause_time;
x = PA_LIKELY(x >= s->time_offset) ? x - s->time_offset : 0;
is_new = x >= s->ex;
if (is_new) {
/* First, we calculate the position we'd estimate for x, so that
* we can adjust our position smoothly from this one */
estimate(s, x, &ney, &nde);
s->ex = x; s->ey = ney; s->de = nde;
s->ry = y;
}
/* Then, we add the new measurement to our history */
add_to_history(s, x, y);
/* And determine the average gradient of the history */
s->dp = avg_gradient(s, x);
/* And calculate when we want to be on track again */
s->px = s->ex + s->adjust_time;
s->py = s->ry + (pa_usec_t) (s->dp * (double) s->adjust_time);
s->abc_valid = FALSE;
/* pa_log_debug("put(%llu | %llu) = %llu", (unsigned long long) (x + s->time_offset), (unsigned long long) x, (unsigned long long) y); */
}
pa_usec_t pa_smoother_get(pa_smoother *s, pa_usec_t x) {
pa_usec_t y;
pa_assert(s);
/* Fix up x value */
if (s->paused)
x = s->pause_time;
x = PA_LIKELY(x >= s->time_offset) ? x - s->time_offset : 0;
if (s->monotonic)
if (x <= s->last_x)
x = s->last_x;
estimate(s, x, &y, NULL);
if (s->monotonic) {
/* Make sure the querier doesn't jump forth and back. */
s->last_x = x;
if (y < s->last_y)
y = s->last_y;
else
s->last_y = y;
}
/* pa_log_debug("get(%llu | %llu) = %llu", (unsigned long long) (x + s->time_offset), (unsigned long long) x, (unsigned long long) y); */
return y;
}
void pa_smoother_set_time_offset(pa_smoother *s, pa_usec_t offset) {
pa_assert(s);
s->time_offset = offset;
/* pa_log_debug("offset(%llu)", (unsigned long long) offset); */
}
void pa_smoother_pause(pa_smoother *s, pa_usec_t x) {
pa_assert(s);
if (s->paused)
return;
/* pa_log_debug("pause(%llu)", (unsigned long long) x); */
s->paused = TRUE;
s->pause_time = x;
}
void pa_smoother_resume(pa_smoother *s, pa_usec_t x) {
pa_assert(s);
if (!s->paused)
return;
if (x < s->pause_time)
x = s->pause_time;
/* pa_log_debug("resume(%llu)", (unsigned long long) x); */
s->paused = FALSE;
s->time_offset += x - s->pause_time;
}
pa_usec_t pa_smoother_translate(pa_smoother *s, pa_usec_t x, pa_usec_t y_delay) {
pa_usec_t ney;
double nde;
pa_assert(s);
/* Fix up x value */
if (s->paused)
x = s->pause_time;
x = PA_LIKELY(x >= s->time_offset) ? x - s->time_offset : 0;
estimate(s, x, &ney, &nde);
/* Play safe and take the larger gradient, so that we wakeup
* earlier when this is used for sleeping */
if (s->dp > nde)
nde = s->dp;
/* pa_log_debug("translate(%llu) = %llu (%0.2f)", (unsigned long long) y_delay, (unsigned long long) ((double) y_delay / nde), nde); */
return (pa_usec_t) ((double) y_delay / nde);
}
void pa_smoother_reset(pa_smoother *s) {
pa_assert(s);
s->n_history = 0;
s->abc_valid = FALSE;
}
|