summaryrefslogtreecommitdiffstats
path: root/sbc
diff options
context:
space:
mode:
authorBrad Midgley <bmidgley@xmission.com>2007-03-17 13:37:31 +0000
committerBrad Midgley <bmidgley@xmission.com>2007-03-17 13:37:31 +0000
commitad868bd4137e86fbf141175f411898796287ff2a (patch)
tree85321330a17866bc08925f8fa3d4a40922fcfbda /sbc
parent1055292b83db7b5eb211a07d1d05c3450faaef20 (diff)
update the sbc encoder from the working fixed-point code in the sbc project
I also tagged the sbc project with "copied-to-bluez-utils" at the same time. We will do sbc work under bluez and sync it with the old sbc project if necessary.
Diffstat (limited to 'sbc')
-rw-r--r--sbc/sbc.c1398
-rw-r--r--sbc/sbc.h30
-rw-r--r--sbc/sbc_math.h44
-rw-r--r--sbc/sbc_tables.h4
4 files changed, 1453 insertions, 23 deletions
diff --git a/sbc/sbc.c b/sbc/sbc.c
index f14f59a9..1f16d70a 100644
--- a/sbc/sbc.c
+++ b/sbc/sbc.c
@@ -2,7 +2,9 @@
*
* Bluetooth low-complexity, subband codec (SBC) library
*
- * Copyright (C) 2004-2007 Marcel Holtmann <marcel@holtmann.org>
+ * Copyright (C) 2004-2006 Marcel Holtmann <marcel@holtmann.org>
+ * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
+ * Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or
@@ -21,13 +23,1407 @@
*
*/
+/* todo items:
+
+ use a log2 table for byte integer scale factors calculation (sum log2 results for high and low bytes)
+ fill bitpool by 16 bits instead of one at a time in bits allocation/bitpool generation
+ port to the dsp
+ don't consume more bytes than passed into the encoder
+
+*/
+
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
+#include <stdio.h>
+#include <errno.h>
#include <stdint.h>
+#include <malloc.h>
+#include <string.h>
+#include <stdlib.h>
+#include <sys/types.h>
+
#include "sbc_math.h"
#include "sbc_tables.h"
#include "sbc.h"
+
+#define SBC_SYNCWORD 0x9C
+
+/* sampling frequency */
+#define SBC_FS_16 0x00
+#define SBC_FS_32 0x01
+#define SBC_FS_44 0x02
+#define SBC_FS_48 0x03
+
+/* nrof_blocks */
+#define SBC_NB_4 0x00
+#define SBC_NB_8 0x01
+#define SBC_NB_12 0x02
+#define SBC_NB_16 0x03
+
+/* channel mode */
+#define SBC_CM_MONO 0x00
+#define SBC_CM_DUAL_CHANNEL 0x01
+#define SBC_CM_STEREO 0x02
+#define SBC_CM_JOINT_STEREO 0x03
+
+/* allocation mode */
+#define SBC_AM_LOUDNESS 0x00
+#define SBC_AM_SNR 0x01
+
+/* subbands */
+#define SBC_SB_4 0x00
+#define SBC_SB_8 0x01
+
+/* This structure contains an unpacked SBC frame.
+ Yes, there is probably quite some unused space herein */
+struct sbc_frame {
+ uint16_t sampling_frequency; /* in kHz */
+ uint8_t blocks;
+ enum {
+ MONO = SBC_CM_MONO,
+ DUAL_CHANNEL = SBC_CM_DUAL_CHANNEL,
+ STEREO = SBC_CM_STEREO,
+ JOINT_STEREO = SBC_CM_JOINT_STEREO
+ } channel_mode;
+ uint8_t channels;
+ enum {
+ LOUDNESS = SBC_AM_LOUDNESS,
+ SNR = SBC_AM_SNR
+ } allocation_method;
+ uint8_t subbands;
+ uint8_t bitpool;
+ uint8_t join; /* bit number x set means joint stereo has been used in subband x */
+ uint8_t scale_factor[2][8]; /* only the lower 4 bits of every element are to be used */
+ uint16_t audio_sample[16][2][8]; /* raw integer subband samples in the frame */
+
+ int32_t sb_sample_f[16][2][8];
+ int32_t sb_sample[16][2][8]; /* modified subband samples */
+ int16_t pcm_sample[2][16*8]; /* original pcm audio samples */
+};
+
+struct sbc_decoder_state {
+ int subbands;
+ int32_t V[2][170];
+ int offset[2][16];
+};
+
+struct sbc_encoder_state {
+ int subbands;
+ int32_t X[2][80];
+};
+
+/*
+ * Calculates the CRC-8 of the first len bits in data
+ */
+static const uint8_t crc_table[256] = {
+ 0x00, 0x1D, 0x3A, 0x27, 0x74, 0x69, 0x4E, 0x53,
+ 0xE8, 0xF5, 0xD2, 0xCF, 0x9C, 0x81, 0xA6, 0xBB,
+ 0xCD, 0xD0, 0xF7, 0xEA, 0xB9, 0xA4, 0x83, 0x9E,
+ 0x25, 0x38, 0x1F, 0x02, 0x51, 0x4C, 0x6B, 0x76,
+ 0x87, 0x9A, 0xBD, 0xA0, 0xF3, 0xEE, 0xC9, 0xD4,
+ 0x6F, 0x72, 0x55, 0x48, 0x1B, 0x06, 0x21, 0x3C,
+ 0x4A, 0x57, 0x70, 0x6D, 0x3E, 0x23, 0x04, 0x19,
+ 0xA2, 0xBF, 0x98, 0x85, 0xD6, 0xCB, 0xEC, 0xF1,
+ 0x13, 0x0E, 0x29, 0x34, 0x67, 0x7A, 0x5D, 0x40,
+ 0xFB, 0xE6, 0xC1, 0xDC, 0x8F, 0x92, 0xB5, 0xA8,
+ 0xDE, 0xC3, 0xE4, 0xF9, 0xAA, 0xB7, 0x90, 0x8D,
+ 0x36, 0x2B, 0x0C, 0x11, 0x42, 0x5F, 0x78, 0x65,
+ 0x94, 0x89, 0xAE, 0xB3, 0xE0, 0xFD, 0xDA, 0xC7,
+ 0x7C, 0x61, 0x46, 0x5B, 0x08, 0x15, 0x32, 0x2F,
+ 0x59, 0x44, 0x63, 0x7E, 0x2D, 0x30, 0x17, 0x0A,
+ 0xB1, 0xAC, 0x8B, 0x96, 0xC5, 0xD8, 0xFF, 0xE2,
+ 0x26, 0x3B, 0x1C, 0x01, 0x52, 0x4F, 0x68, 0x75,
+ 0xCE, 0xD3, 0xF4, 0xE9, 0xBA, 0xA7, 0x80, 0x9D,
+ 0xEB, 0xF6, 0xD1, 0xCC, 0x9F, 0x82, 0xA5, 0xB8,
+ 0x03, 0x1E, 0x39, 0x24, 0x77, 0x6A, 0x4D, 0x50,
+ 0xA1, 0xBC, 0x9B, 0x86, 0xD5, 0xC8, 0xEF, 0xF2,
+ 0x49, 0x54, 0x73, 0x6E, 0x3D, 0x20, 0x07, 0x1A,
+ 0x6C, 0x71, 0x56, 0x4B, 0x18, 0x05, 0x22, 0x3F,
+ 0x84, 0x99, 0xBE, 0xA3, 0xF0, 0xED, 0xCA, 0xD7,
+ 0x35, 0x28, 0x0F, 0x12, 0x41, 0x5C, 0x7B, 0x66,
+ 0xDD, 0xC0, 0xE7, 0xFA, 0xA9, 0xB4, 0x93, 0x8E,
+ 0xF8, 0xE5, 0xC2, 0xDF, 0x8C, 0x91, 0xB6, 0xAB,
+ 0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43,
+ 0xB2, 0xAF, 0x88, 0x95, 0xC6, 0xDB, 0xFC, 0xE1,
+ 0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09,
+ 0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C,
+ 0x97, 0x8A, 0xAD, 0xB0, 0xE3, 0xFE, 0xD9, 0xC4
+};
+
+static uint8_t sbc_crc8(const uint8_t * data, size_t len)
+{
+ uint8_t crc = 0x0f;
+ size_t i;
+ uint8_t octet;
+
+ for (i = 0; i < len / 8; i++)
+ crc = crc_table[crc ^ data[i]];
+
+ octet = data[i];
+ for (i = 0; i < len % 8; i++) {
+ char bit = ((octet ^ crc) & 0x80) >> 7;
+
+ crc = ((crc & 0x7f) << 1) ^ (bit ? 0x1d : 0);
+
+ octet = octet << 1;
+ }
+
+ return crc;
+}
+
+/*
+ * Code straight from the spec to calculate the bits array
+ * Takes a pointer to the frame in question, a pointer to the bits array and the sampling frequency (as 2 bit integer)
+ */
+static void sbc_calculate_bits(const struct sbc_frame *frame, int (*bits)[8], uint8_t sf)
+{
+ if (frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL) {
+ int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice;
+ int ch, sb;
+
+ for (ch = 0; ch < frame->channels; ch++) {
+ if (frame->allocation_method == SNR) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ bitneed[ch][sb] = frame->scale_factor[ch][sb];
+ }
+ } else {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (frame->scale_factor[ch][sb] == 0) {
+ bitneed[ch][sb] = -5;
+ } else {
+ if (frame->subbands == 4) {
+ loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb];
+ } else {
+ loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb];
+ }
+ if (loudness > 0) {
+ bitneed[ch][sb] = loudness / 2;
+ } else {
+ bitneed[ch][sb] = loudness;
+ }
+ }
+ }
+ }
+
+ max_bitneed = 0;
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (bitneed[ch][sb] > max_bitneed)
+ max_bitneed = bitneed[ch][sb];
+ }
+
+ bitcount = 0;
+ slicecount = 0;
+ bitslice = max_bitneed + 1;
+ do {
+ bitslice--;
+ bitcount += slicecount;
+ slicecount = 0;
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16)) {
+ slicecount++;
+ } else if (bitneed[ch][sb] == bitslice + 1) {
+ slicecount += 2;
+ }
+ }
+ } while (bitcount + slicecount < frame->bitpool);
+
+ if (bitcount + slicecount == frame->bitpool) {
+ bitcount += slicecount;
+ bitslice--;
+ }
+
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (bitneed[ch][sb] < bitslice + 2) {
+ bits[ch][sb] = 0;
+ } else {
+ bits[ch][sb] = bitneed[ch][sb] - bitslice;
+ if (bits[ch][sb] > 16)
+ bits[ch][sb] = 16;
+ }
+ }
+
+ sb = 0;
+ while (bitcount < frame->bitpool && sb < frame->subbands) {
+ if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) {
+ bits[ch][sb]++;
+ bitcount++;
+ } else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) {
+ bits[ch][sb] = 2;
+ bitcount += 2;
+ }
+ sb++;
+ }
+
+ sb = 0;
+ while (bitcount < frame->bitpool && sb < frame->subbands) {
+ if (bits[ch][sb] < 16) {
+ bits[ch][sb]++;
+ bitcount++;
+ }
+ sb++;
+ }
+
+ }
+
+ } else if (frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO) {
+ int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice;
+ int ch, sb;
+
+ if (frame->allocation_method == SNR) {
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ bitneed[ch][sb] = frame->scale_factor[ch][sb];
+ }
+ }
+ } else {
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (frame->scale_factor[ch][sb] == 0) {
+ bitneed[ch][sb] = -5;
+ } else {
+ if (frame->subbands == 4) {
+ loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb];
+ } else {
+ loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb];
+ }
+ if (loudness > 0) {
+ bitneed[ch][sb] = loudness / 2;
+ } else {
+ bitneed[ch][sb] = loudness;
+ }
+ }
+ }
+ }
+ }
+
+ max_bitneed = 0;
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (bitneed[ch][sb] > max_bitneed)
+ max_bitneed = bitneed[ch][sb];
+ }
+ }
+
+ bitcount = 0;
+ slicecount = 0;
+ bitslice = max_bitneed + 1;
+ do {
+ bitslice--;
+ bitcount += slicecount;
+ slicecount = 0;
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16)) {
+ slicecount++;
+ } else if (bitneed[ch][sb] == bitslice + 1) {
+ slicecount += 2;
+ }
+ }
+ }
+ } while (bitcount + slicecount < frame->bitpool);
+ if (bitcount + slicecount == frame->bitpool) {
+ bitcount += slicecount;
+ bitslice--;
+ }
+
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (bitneed[ch][sb] < bitslice + 2) {
+ bits[ch][sb] = 0;
+ } else {
+ bits[ch][sb] = bitneed[ch][sb] - bitslice;
+ if (bits[ch][sb] > 16)
+ bits[ch][sb] = 16;
+ }
+ }
+ }
+
+ ch = 0;
+ sb = 0;
+ while ((bitcount < frame->bitpool) && (sb < frame->subbands)) {
+ if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) {
+ bits[ch][sb]++;
+ bitcount++;
+ } else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) {
+ bits[ch][sb] = 2;
+ bitcount += 2;
+ }
+ if (ch == 1) {
+ ch = 0;
+ sb++;
+ } else {
+ ch = 1;
+ }
+ }
+
+ ch = 0;
+ sb = 0;
+ while ((bitcount < frame->bitpool) && (sb < frame->subbands)) {
+ if (bits[ch][sb] < 16) {
+ bits[ch][sb]++;
+ bitcount++;
+ }
+ if (ch == 1) {
+ ch = 0;
+ sb++;
+ } else {
+ ch = 1;
+ }
+ }
+
+ }
+
+}
+
+/*
+ * Unpacks a SBC frame at the beginning of the stream in data,
+ * which has at most len bytes into frame.
+ * Returns the length in bytes of the packed frame, or a negative
+ * value on error. The error codes are:
+ *
+ * -1 Data stream too short
+ * -2 Sync byte incorrect
+ * -3 CRC8 incorrect
+ * -4 Bitpool value out of bounds
+ */
+static int sbc_unpack_frame(const uint8_t * data, struct sbc_frame *frame, size_t len)
+{
+ int consumed;
+ /* Will copy the parts of the header that are relevant to crc calculation here */
+ uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+ int crc_pos = 0;
+ int32_t temp;
+
+ uint8_t sf; /* sampling_frequency, temporarily needed as array index */
+
+ int ch, sb, blk, bit; /* channel, subband, block and bit standard counters */
+ int bits[2][8]; /* bits distribution */
+ int levels[2][8]; /* levels derived from that */
+
+ if (len < 4)
+ return -1;
+
+ if (data[0] != SBC_SYNCWORD)
+ return -2;
+
+ sf = (data[1] >> 6) & 0x03;
+ switch (sf) {
+ case SBC_FS_16:
+ frame->sampling_frequency = 16000;
+ break;
+ case SBC_FS_32:
+ frame->sampling_frequency = 32000;
+ break;
+ case SBC_FS_44:
+ frame->sampling_frequency = 44100;
+ break;
+ case SBC_FS_48:
+ frame->sampling_frequency = 48000;
+ break;
+ }
+
+ switch ((data[1] >> 4) & 0x03) {
+ case SBC_NB_4:
+ frame->blocks = 4;
+ break;
+ case SBC_NB_8:
+ frame->blocks = 8;
+ break;
+ case SBC_NB_12:
+ frame->blocks = 12;
+ break;
+ case SBC_NB_16:
+ frame->blocks = 16;
+ break;
+ }
+
+ frame->channel_mode = (data[1] >> 2) & 0x03;
+ switch (frame->channel_mode) {
+ case MONO:
+ frame->channels = 1;
+ break;
+ case DUAL_CHANNEL: /* fall-through */
+ case STEREO:
+ case JOINT_STEREO:
+ frame->channels = 2;
+ break;
+ }
+
+ frame->allocation_method = (data[1] >> 1) & 0x01;
+
+ frame->subbands = (data[1] & 0x01) ? 8 : 4;
+
+ frame->bitpool = data[2];
+
+ if (((frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL)
+ && frame->bitpool > 16 * frame->subbands)
+ || ((frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO)
+ && frame->bitpool > 32 * frame->subbands))
+ return -4;
+
+ /* data[3] is crc, we're checking it later */
+
+ consumed = 32;
+
+ crc_header[0] = data[1];
+ crc_header[1] = data[2];
+ crc_pos = 16;
+
+ if (frame->channel_mode == JOINT_STEREO) {
+ if (len * 8 < consumed + frame->subbands)
+ return -1;
+
+ frame->join = 0x00;
+ for (sb = 0; sb < frame->subbands - 1; sb++) {
+ frame->join |= ((data[4] >> (7 - sb)) & 0x01) << sb;
+ }
+ if (frame->subbands == 4) {
+ crc_header[crc_pos / 8] = data[4] & 0xf0;
+ } else {
+ crc_header[crc_pos / 8] = data[4];
+ }
+
+ consumed += frame->subbands;
+ crc_pos += frame->subbands;
+ }
+
+ if (len * 8 < consumed + (4 * frame->subbands * frame->channels))
+ return -1;
+
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ /* FIXME assert(consumed % 4 == 0); */
+ frame->scale_factor[ch][sb] = (data[consumed >> 3] >> (4 - (consumed & 0x7))) & 0x0F;
+ crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] << (4 - (crc_pos & 0x7));
+
+ consumed += 4;
+ crc_pos += 4;
+ }
+ }
+
+ if (data[3] != sbc_crc8(crc_header, crc_pos))
+ return -3;
+
+ sbc_calculate_bits(frame, bits, sf);
+
+ for (blk = 0; blk < frame->blocks; blk++) {
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ frame->audio_sample[blk][ch][sb] = 0;
+ if (bits[ch][sb] == 0)
+ continue;
+
+ for (bit = 0; bit < bits[ch][sb]; bit++) {
+ int b; /* A bit */
+ if (consumed > len * 8)
+ return -1;
+
+ b = (data[consumed >> 3] >> (7 - (consumed & 0x7))) & 0x01;
+ frame->audio_sample[blk][ch][sb] |= b << (bits[ch][sb] - bit - 1);
+
+ consumed++;
+ }
+ }
+ }
+ }
+
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ levels[ch][sb] = (1 << bits[ch][sb]) - 1;
+ }
+ }
+
+ for (blk = 0; blk < frame->blocks; blk++) {
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (levels[ch][sb] > 0) {
+ frame->sb_sample[blk][ch][sb] =
+ (((frame->audio_sample[blk][ch][sb] << 16) | 0x8000) / levels[ch][sb]) - 0x8000;
+
+ frame->sb_sample[blk][ch][sb] >>= 3;
+ frame->sb_sample[blk][ch][sb] = (frame->sb_sample[blk][ch][sb] << (frame->scale_factor[ch][sb] + 1)); // Q13
+
+ } else {
+ frame->sb_sample[blk][ch][sb] = 0;
+ }
+ }
+ }
+ }
+
+ if (frame->channel_mode == JOINT_STEREO) {
+ for (blk = 0; blk < frame->blocks; blk++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (frame->join & (0x01 << sb)) {
+ temp = frame->sb_sample[blk][0][sb] + frame->sb_sample[blk][1][sb];
+ frame->sb_sample[blk][1][sb] = frame->sb_sample[blk][0][sb] - frame->sb_sample[blk][1][sb];
+ frame->sb_sample[blk][0][sb] = temp;
+ }
+ }
+ }
+ }
+
+ if ((consumed & 0x7) != 0)
+ consumed += 8 - (consumed & 0x7);
+
+
+ return consumed >> 3;
+}
+
+static void sbc_decoder_init(struct sbc_decoder_state *state, const struct sbc_frame *frame)
+{
+ int i, ch;
+
+ memset(state->V, 0, sizeof(state->V));
+ state->subbands = frame->subbands;
+
+ for (ch = 0; ch < 2; ch++)
+ for (i = 0; i < frame->subbands * 2; i++)
+ state->offset[ch][i] = (10 * i + 10);
+}
+
+static inline void sbc_synthesize_four(struct sbc_decoder_state *state,
+ struct sbc_frame *frame, int ch, int blk)
+{
+ int i, j, k, idx;
+ sbc_extended_t res;
+
+ for(i = 0; i < 8; i++) {
+ /* Shifting */
+ state->offset[ch][i]--;
+ if(state->offset[ch][i] < 0) {
+ state->offset[ch][i] = 79;
+ for(j = 0; j < 9; j++) {
+ state->V[ch][j+80] = state->V[ch][j];
+ }
+ }
+ }
+
+
+ for(i = 0; i < 8; i++) {
+ /* Distribute the new matrix value to the shifted position */
+ SBC_FIXED_0(res);
+ for (j = 0; j < 4; j++) {
+ MULA(res, synmatrix4[i][j], frame->sb_sample[blk][ch][j]);
+ }
+ state->V[ch][state->offset[ch][i]] = SCALE4_STAGED1(res);
+ }
+
+ /* Compute the samples */
+ for(idx = 0, i = 0; i < 4; i++) {
+ k = (i + 4) & 0xf;
+ SBC_FIXED_0(res);
+ for(j = 0; j < 10; idx++) {
+ MULA(res, state->V[ch][state->offset[ch][i]+j++], sbc_proto_4_40m0[idx]);
+ MULA(res, state->V[ch][state->offset[ch][k]+j++], sbc_proto_4_40m1[idx]);
+ }
+ /* Store in output */
+ frame->pcm_sample[ch][blk * 4 + i] = SCALE4_STAGED2(res); // Q0
+ }
+}
+
+static inline void sbc_synthesize_eight(struct sbc_decoder_state *state,
+ struct sbc_frame *frame, int ch, int blk)
+{
+ int i, j, k, idx;
+ sbc_extended_t res;
+
+ for(i = 0; i < 16; i++) {
+ /* Shifting */
+ state->offset[ch][i]--;
+ if(state->offset[ch][i] < 0) {
+ state->offset[ch][i] = 159;
+ for(j = 0; j < 9; j++) {
+ state->V[ch][j+160] = state->V[ch][j];
+ }
+ }
+ }
+
+ for(i = 0; i < 16; i++) {
+ /* Distribute the new matrix value to the shifted position */
+ SBC_FIXED_0(res);
+ for (j = 0; j < 8; j++) {
+ MULA(res, synmatrix8[i][j], frame->sb_sample[blk][ch][j]); // Q28 = Q15 * Q13
+ }
+ state->V[ch][state->offset[ch][i]] = SCALE8_STAGED1(res); // Q10
+ }
+
+
+ /* Compute the samples */
+ for(idx = 0, i = 0; i < 8; i++) {
+ k = (i + 8) & 0xf;
+ SBC_FIXED_0(res);
+ for(j = 0; j < 10; idx++) {
+ MULA(res, state->V[ch][state->offset[ch][i]+j++], sbc_proto_8_80m0[idx]);
+ MULA(res, state->V[ch][state->offset[ch][k]+j++], sbc_proto_8_80m1[idx]);
+ }
+ /* Store in output */
+ frame->pcm_sample[ch][blk * 8 + i] = SCALE8_STAGED2(res); // Q0
+
+ }
+}
+
+static int sbc_synthesize_audio(struct sbc_decoder_state *state, struct sbc_frame *frame)
+{
+ int ch, blk;
+
+ switch (frame->subbands) {
+ case 4:
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (blk = 0; blk < frame->blocks; blk++)
+ sbc_synthesize_four(state, frame, ch, blk);
+ }
+ return frame->blocks * 4;
+
+ case 8:
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (blk = 0; blk < frame->blocks; blk++)
+ sbc_synthesize_eight(state, frame, ch, blk);
+ }
+ return frame->blocks * 8;
+
+ default:
+ return -EIO;
+ }
+}
+
+static void sbc_encoder_init(struct sbc_encoder_state *state, const struct sbc_frame *frame)
+{
+ memset(&state->X, 0, sizeof(state->X));
+ state->subbands = frame->subbands;
+}
+
+static inline void _sbc_analyze_four(const int32_t *in, int32_t *out)
+{
+
+ sbc_extended_t res;
+ sbc_extended_t t[8];
+
+ out[0] = out[1] = out[2] = out[3] = 0;
+
+ MUL(res, _sbc_proto_4[0], (in[8] - in[32])); // Q18
+ MULA(res, _sbc_proto_4[1], (in[16] - in[24]));
+ t[0] = SCALE4_STAGE1(res); // Q8
+
+ MUL(res, _sbc_proto_4[2], in[1]);
+ MULA(res, _sbc_proto_4[3], in[9]);
+ MULA(res, _sbc_proto_4[4], in[17]);
+ MULA(res, _sbc_proto_4[5], in[25]);
+ MULA(res, _sbc_proto_4[6], in[33]);
+ t[1] = SCALE4_STAGE1(res);
+
+ MUL(res, _sbc_proto_4[7], in[2]);
+ MULA(res, _sbc_proto_4[8], in[10]);
+ MULA(res, _sbc_proto_4[9], in[18]);
+ MULA(res, _sbc_proto_4[10], in[26]);
+ MULA(res, _sbc_proto_4[11], in[34]);
+ t[2] = SCALE4_STAGE1(res);
+
+ MUL(res, _sbc_proto_4[12], in[3]);
+ MULA(res, _sbc_proto_4[13], in[11]);
+ MULA(res, _sbc_proto_4[14], in[19]);
+ MULA(res, _sbc_proto_4[15], in[27]);
+ MULA(res, _sbc_proto_4[16], in[35]);
+ t[3] = SCALE4_STAGE1(res);
+
+ MUL(res, _sbc_proto_4[17], in[4]);
+ MULA(res, _sbc_proto_4[18], (in[12] + in[28]));
+ MULA(res, _sbc_proto_4[19], in[20]);
+ MULA(res, _sbc_proto_4[17], in[36]);
+ t[4] = SCALE4_STAGE1(res);
+
+ MUL(res, _sbc_proto_4[16], in[5]);
+ MULA(res, _sbc_proto_4[15], in[13]);
+ MULA(res, _sbc_proto_4[14], in[21]);
+ MULA(res, _sbc_proto_4[13], in[29]);
+ MULA(res, _sbc_proto_4[12], in[37]);
+ t[5] = SCALE4_STAGE1(res);
+
+ MUL(res, _sbc_proto_4[11], in[6]);
+ MULA(res, _sbc_proto_4[10], in[14]);
+ MULA(res, _sbc_proto_4[9], in[22]);
+ MULA(res, _sbc_proto_4[8], in[30]);
+ MULA(res, _sbc_proto_4[7], in[38]);
+ t[6] = SCALE4_STAGE1(res);
+
+ MUL(res, _sbc_proto_4[6], in[7]);
+ MULA(res, _sbc_proto_4[5], in[15]);
+ MULA(res, _sbc_proto_4[4], in[23]);
+ MULA(res, _sbc_proto_4[3], in[31]);
+ MULA(res, _sbc_proto_4[2], in[39]);
+ t[7] = SCALE4_STAGE1(res);
+
+ MUL(res, _anamatrix4[0], t[0]);
+ MULA(res, _anamatrix4[1], t[1]);
+ MULA(res, _anamatrix4[2], t[2]);
+ MULA(res, _anamatrix4[1], t[3]);
+ MULA(res, _anamatrix4[0], t[4]);
+ MULA(res, _anamatrix4[3], t[5]);
+ MULA(res, -_anamatrix4[3], t[7]);
+ out[0] = SCALE4_STAGE2(res); // Q0
+
+ MUL(res, -_anamatrix4[0], t[0]);
+ MULA(res, _anamatrix4[3], t[1]);
+ MULA(res, _anamatrix4[2], t[2]);
+ MULA(res, _anamatrix4[3], t[3]);
+ MULA(res, -_anamatrix4[0], t[4]);
+ MULA(res, -_anamatrix4[1], t[5]);
+ MULA(res, _anamatrix4[1], t[7]);
+ out[1] = SCALE4_STAGE2(res);
+
+
+ MUL(res, -_anamatrix4[0], t[0]);
+ MULA(res, -_anamatrix4[3], t[1]);
+ MULA(res, _anamatrix4[2], t[2]);
+ MULA(res, -_anamatrix4[3], t[3]);
+ MULA(res, -_anamatrix4[0], t[4]);
+ MULA(res, _anamatrix4[1], t[5]);
+ MULA(res, -_anamatrix4[1], t[7]);
+ out[2] = SCALE4_STAGE2(res);
+
+ MUL(res, _anamatrix4[0], t[0]);
+ MULA(res, -_anamatrix4[1], t[1]);
+ MULA(res, _anamatrix4[2], t[2]);
+ MULA(res, -_anamatrix4[1], t[3]);
+ MULA(res, _anamatrix4[0], t[4]);
+ MULA(res, -_anamatrix4[3], t[5]);
+ MULA(res, _anamatrix4[3], t[7]);
+ out[3] = SCALE4_STAGE2(res);
+}
+static inline void sbc_analyze_four(struct sbc_encoder_state *state,
+ struct sbc_frame *frame, int ch, int blk)
+{
+ int i;
+ /* Input 4 New Audio Samples */
+ for (i = 39; i >= 4; i--)
+ state->X[ch][i] = state->X[ch][i - 4];
+ for (i = 3; i >= 0; i--)
+ state->X[ch][i] = frame->pcm_sample[ch][blk * 4 + (3 - i)];
+ _sbc_analyze_four(state->X[ch], frame->sb_sample_f[blk][ch]);
+}
+
+static inline void _sbc_analyze_eight(const int32_t *in, int32_t *out)
+{
+ sbc_extended_t res;
+ sbc_extended_t t[8];
+
+ out[0] = out[1] = out[2] = out[3] = out[4] = out[5] = out[6] = out[7] = 0;
+
+ MUL(res, _sbc_proto_8[0], (in[16] - in[64])); // Q18 = Q18 * Q0
+ MULA(res, _sbc_proto_8[1], (in[32] - in[48]));
+ MULA(res, _sbc_proto_8[2], in[4]);
+ MULA(res, _sbc_proto_8[3], in[20]);
+ MULA(res, _sbc_proto_8[4], in[36]);
+ MULA(res, _sbc_proto_8[5], in[52]);
+ t[0] = SCALE8_STAGE1(res); // Q10
+
+ MUL(res, _sbc_proto_8[6], in[2]);
+ MULA(res, _sbc_proto_8[7], in[18]);
+ MULA(res, _sbc_proto_8[8], in[34]);
+ MULA(res, _sbc_proto_8[9], in[50]);
+ MULA(res, _sbc_proto_8[10], in[66]);
+ t[1] = SCALE8_STAGE1(res);
+
+ MUL(res, _sbc_proto_8[11], in[1]);
+ MULA(res, _sbc_proto_8[12], in[17]);
+ MULA(res, _sbc_proto_8[13], in[33]);
+ MULA(res, _sbc_proto_8[14], in[49]);
+ MULA(res, _sbc_proto_8[15], in[65]);
+ MULA(res, _sbc_proto_8[16], in[3]);
+ MULA(res, _sbc_proto_8[17], in[19]);
+ MULA(res, _sbc_proto_8[18], in[35]);
+ MULA(res, _sbc_proto_8[19], in[51]);
+ MULA(res, _sbc_proto_8[20], in[67]);
+ t[2] = SCALE8_STAGE1(res);
+
+ MUL(res, _sbc_proto_8[21], in[5]);
+ MULA(res, _sbc_proto_8[22], in[21]);
+ MULA(res, _sbc_proto_8[23], in[37]);
+ MULA(res, _sbc_proto_8[24], in[53]);
+ MULA(res, _sbc_proto_8[25], in[69]);
+ MULA(res, -_sbc_proto_8[15], in[15]);
+ MULA(res, -_sbc_proto_8[14], in[31]);
+ MULA(res, -_sbc_proto_8[13], in[47]);
+ MULA(res, -_sbc_proto_8[12], in[63]);
+ MULA(res, -_sbc_proto_8[11], in[79]);
+ t[3] = SCALE8_STAGE1(res);
+
+ MUL(res, _sbc_proto_8[26], in[6]);
+ MULA(res, _sbc_proto_8[27], in[22]);
+ MULA(res, _sbc_proto_8[28], in[38]);
+ MULA(res, _sbc_proto_8[29], in[54]);
+ MULA(res, _sbc_proto_8[30], in[70]);
+ MULA(res, -_sbc_proto_8[10], in[14]);
+ MULA(res, -_sbc_proto_8[9], in[30]);
+ MULA(res, -_sbc_proto_8[8], in[46]);
+ MULA(res, -_sbc_proto_8[7], in[62]);
+ MULA(res, -_sbc_proto_8[6], in[78]);
+ t[4] = SCALE8_STAGE1(res);
+
+ MUL(res, _sbc_proto_8[31], in[7]);
+ MULA(res, _sbc_proto_8[32], in[23]);
+ MULA(res, _sbc_proto_8[33], in[39]);
+ MULA(res, _sbc_proto_8[34], in[55]);
+ MULA(res, _sbc_proto_8[35], in[71]);
+ MULA(res, -_sbc_proto_8[20], in[13]);
+ MULA(res, -_sbc_proto_8[19], in[29]);
+ MULA(res, -_sbc_proto_8[18], in[45]);
+ MULA(res, -_sbc_proto_8[17], in[61]);
+ MULA(res, -_sbc_proto_8[16], in[77]);
+ t[5] = SCALE8_STAGE1(res);
+
+ MUL(res, _sbc_proto_8[36], (in[8] + in[72]));
+ MULA(res, _sbc_proto_8[37], in[24]);
+ MULA(res, _sbc_proto_8[38], in[40]);
+ MULA(res, _sbc_proto_8[37], in[56]);
+ MULA(res, -_sbc_proto_8[39], in[12]);
+ MULA(res, -_sbc_proto_8[5], in[28]);
+ MULA(res, -_sbc_proto_8[4], in[44]);
+ MULA(res, -_sbc_proto_8[3], in[60]);
+ MULA(res, -_sbc_proto_8[2], in[76]);
+ t[6] = SCALE8_STAGE1(res);
+
+ MUL(res, _sbc_proto_8[35], in[9]);
+ MULA(res, _sbc_proto_8[34], in[25]);
+ MULA(res, _sbc_proto_8[33], in[41]);
+ MULA(res, _sbc_proto_8[32], in[57]);
+ MULA(res, _sbc_proto_8[31], in[73]);
+ MULA(res, -_sbc_proto_8[25], in[11]);
+ MULA(res, -_sbc_proto_8[24], in[27]);
+ MULA(res, -_sbc_proto_8[23], in[43]);
+ MULA(res, -_sbc_proto_8[22], in[59]);
+ MULA(res, -_sbc_proto_8[21], in[75]);
+ t[7] = SCALE8_STAGE1(res);
+
+ MUL(res, _anamatrix8[0], t[0]); // = Q14 * Q10
+ MULA(res, _anamatrix8[7], t[1]);
+ MULA(res, _anamatrix8[2], t[2]);
+ MULA(res, _anamatrix8[3], t[3]);
+ MULA(res, _anamatrix8[6], t[4]);
+ MULA(res, _anamatrix8[4], t[5]);
+ MULA(res, _anamatrix8[1], t[6]);
+ MULA(res, _anamatrix8[5], t[7]);
+ out[0] = SCALE8_STAGE2(res); // Q0
+
+ MUL(res, _anamatrix8[1], t[0]);
+ MULA(res, _anamatrix8[7], t[1]);
+ MULA(res, _anamatrix8[3], t[2]);
+ MULA(res, -_anamatrix8[5], t[3]);
+ MULA(res, -_anamatrix8[6], t[4]);
+ MULA(res, -_anamatrix8[2], t[5]);
+ MULA(res, -_anamatrix8[0], t[6]);
+ MULA(res, -_anamatrix8[4], t[7]);
+ out[1] = SCALE8_STAGE2(res);
+
+ MUL(res, -_anamatrix8[1], t[0]);
+ MULA(res, _anamatrix8[7], t[1]);
+ MULA(res, _anamatrix8[4], t[2]);
+ MULA(res, -_anamatrix8[2], t[3]);
+ MULA(res, -_anamatrix8[6], t[4]);
+ MULA(res, _anamatrix8[5], t[5]);
+ MULA(res, _anamatrix8[0], t[6]);
+ MULA(res, _anamatrix8[3], t[7]);
+ out[2] = SCALE8_STAGE2(res);
+
+ MUL(res, -_anamatrix8[0], t[0]);
+ MULA(res, _anamatrix8[7], t[1]);
+ MULA(res, _anamatrix8[5], t[2]);
+ MULA(res, -_anamatrix8[4], t[3]);
+ MULA(res, _anamatrix8[6], t[4]);
+ MULA(res, _anamatrix8[3], t[5]);
+ MULA(res, -_anamatrix8[1], t[6]);
+ MULA(res, -_anamatrix8[2], t[7]);
+ out[3] = SCALE8_STAGE2(res);
+
+ MUL(res, -_anamatrix8[0], t[0]);
+ MULA(res, _anamatrix8[7], t[1]);
+ MULA(res, -_anamatrix8[5], t[2]);
+ MULA(res, _anamatrix8[4], t[3]);
+ MULA(res, _anamatrix8[6], t[4]);
+ MULA(res, -_anamatrix8[3], t[5]);
+ MULA(res, -_anamatrix8[1], t[6]);
+ MULA(res, _anamatrix8[2], t[7]);
+ out[4] = SCALE8_STAGE2(res);
+
+ MUL(res, -_anamatrix8[1], t[0]);
+ MULA(res, _anamatrix8[7], t[1]);
+ MULA(res, -_anamatrix8[4], t[2]);
+ MULA(res, _anamatrix8[2], t[3]);
+ MULA(res, -_anamatrix8[6], t[4]);
+ MULA(res, -_anamatrix8[5], t[5]);
+ MULA(res, _anamatrix8[0], t[6]);
+ MULA(res, -_anamatrix8[3], t[7]);
+ out[5] = SCALE8_STAGE2(res);
+
+ MUL(res, _anamatrix8[1], t[0]);
+ MULA(res, _anamatrix8[7], t[1]);
+ MULA(res, -_anamatrix8[3], t[2]);
+ MULA(res, _anamatrix8[5], t[3]);
+ MULA(res, -_anamatrix8[6], t[4]);
+ MULA(res, _anamatrix8[2], t[5]);
+ MULA(res, -_anamatrix8[0], t[6]);
+ MULA(res, _anamatrix8[4], t[7]);
+ out[6] = SCALE8_STAGE2(res);
+
+ MUL(res, _anamatrix8[0], t[0]);
+ MULA(res, _anamatrix8[7], t[1]);
+ MULA(res, -_anamatrix8[2], t[2]);
+ MULA(res, -_anamatrix8[3], t[3]);
+ MULA(res, _anamatrix8[6], t[4]);
+ MULA(res, -_anamatrix8[4], t[5]);
+ MULA(res, _anamatrix8[1], t[6]);
+ MULA(res, -_anamatrix8[5], t[7]);
+ out[7] = SCALE8_STAGE2(res);
+}
+
+static inline void sbc_analyze_eight(struct sbc_encoder_state *state,
+ struct sbc_frame *frame, int ch, int blk)
+{
+ int i;
+
+ /* Input 8 Audio Samples */
+ for (i = 79; i >= 8; i--)
+ state->X[ch][i] = state->X[ch][i - 8];
+ for (i = 7; i >= 0; i--)
+ state->X[ch][i] = frame->pcm_sample[ch][blk * 8 + (7 - i)];
+ _sbc_analyze_eight(state->X[ch], frame->sb_sample_f[blk][ch]);
+}
+
+static int sbc_analyze_audio(struct sbc_encoder_state *state, struct sbc_frame *frame)
+{
+ int ch, blk;
+
+ switch (frame->subbands) {
+ case 4:
+ for (ch = 0; ch < frame->channels; ch++)
+ for (blk = 0; blk < frame->blocks; blk++) {
+ sbc_analyze_four(state, frame, ch, blk);
+ }
+ return frame->blocks * 4;
+
+ case 8:
+ for (ch = 0; ch < frame->channels; ch++)
+ for (blk = 0; blk < frame->blocks; blk++) {
+ sbc_analyze_eight(state, frame, ch, blk);
+ }
+ return frame->blocks * 8;
+
+ default:
+ return -EIO;
+ }
+}
+
+/*
+ * Packs the SBC frame from frame into the memory at data. At most len
+ * bytes will be used, should more memory be needed an appropriate
+ * error code will be returned. Returns the length of the packed frame
+ * on success or a negative value on error.
+ *
+ * The error codes are:
+ * -1 Not enough memory reserved
+ * -2 Unsupported sampling rate
+ * -3 Unsupported number of blocks
+ * -4 Unsupported number of subbands
+ * -5 Bitpool value out of bounds
+ * -99 not implemented
+ */
+
+static int sbc_pack_frame(uint8_t * data, struct sbc_frame *frame, size_t len)
+{
+ int produced;
+ /* Will copy the header parts for CRC-8 calculation here */
+ uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+ int crc_pos = 0;
+
+ uint8_t sf; /* Sampling frequency as temporary value for table lookup */
+
+ int ch, sb, blk, bit; /* channel, subband, block and bit counters */
+ int bits[2][8]; /* bits distribution */
+ int levels[2][8]; /* levels are derived from that */
+
+ u_int32_t scalefactor[2][8]; /* derived from frame->scale_factor */
+
+ if (len < 4) {
+ return -1;
+ }
+
+ /* Clear first 4 bytes of data (that's the constant length part of the SBC header) */
+ memset(data, 0, 4);
+
+ data[0] = SBC_SYNCWORD;
+
+ if (frame->sampling_frequency == 16000) {
+ data[1] |= (SBC_FS_16 & 0x03) << 6;
+ sf = SBC_FS_16;
+ } else if (frame->sampling_frequency == 32000) {
+ data[1] |= (SBC_FS_32 & 0x03) << 6;
+ sf = SBC_FS_32;
+ } else if (frame->sampling_frequency == 44100) {
+ data[1] |= (SBC_FS_44 & 0x03) << 6;
+ sf = SBC_FS_44;
+ } else if (frame->sampling_frequency == 48000) {
+ data[1] |= (SBC_FS_48 & 0x03) << 6;
+ sf = SBC_FS_48;
+ } else {
+ return -2;
+ }
+
+ switch (frame->blocks) {
+ case 4:
+ data[1] |= (SBC_NB_4 & 0x03) << 4;
+ break;
+ case 8:
+ data[1] |= (SBC_NB_8 & 0x03) << 4;
+ break;
+ case 12:
+ data[1] |= (SBC_NB_12 & 0x03) << 4;
+ break;
+ case 16:
+ data[1] |= (SBC_NB_16 & 0x03) << 4;
+ break;
+ default:
+ return -3;
+ break;
+ }
+
+ data[1] |= (frame->channel_mode & 0x03) << 2;
+
+ data[1] |= (frame->allocation_method & 0x01) << 1;
+
+ switch (frame->subbands) {
+ case 4:
+ /* Nothing to do */
+ break;
+ case 8:
+ data[1] |= 0x01;
+ break;
+ default:
+ return -4;
+ break;
+ }
+
+ data[2] = frame->bitpool;
+ if (((frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL)
+ && frame->bitpool > 16 * frame->subbands)
+ || ((frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO)
+ && frame->bitpool > 32 * frame->subbands)) {
+ return -5;
+ }
+
+ /* Can't fill in crc yet */
+
+ produced = 32;
+
+ crc_header[0] = data[1];
+ crc_header[1] = data[2];
+ crc_pos = 16;
+
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ frame->scale_factor[ch][sb] = 0;
+ scalefactor[ch][sb] = 2;
+ for (blk = 0; blk < frame->blocks; blk++) {
+ while (scalefactor[ch][sb] < fabs(frame->sb_sample_f[blk][ch][sb])) {
+ frame->scale_factor[ch][sb]++;
+ scalefactor[ch][sb] *= 2;
+ }
+ }
+ }
+ }
+
+ if (frame->channel_mode == JOINT_STEREO) {
+ int32_t sb_sample_j[16][2][7]; /* like frame->sb_sample but joint stereo */
+ int scalefactor_j[2][7], scale_factor_j[2][7]; /* scalefactor and scale_factor in joint case */
+
+ /* Calculate joint stereo signal */
+ for (sb = 0; sb < frame->subbands - 1; sb++) {
+ for (blk = 0; blk < frame->blocks; blk++) {
+ sb_sample_j[blk][0][sb] = (frame->sb_sample_f[blk][0][sb] + frame->sb_sample_f[blk][1][sb]) >> 1;
+ sb_sample_j[blk][1][sb] = (frame->sb_sample_f[blk][0][sb] - frame->sb_sample_f[blk][1][sb]) >> 1;
+ }
+ }
+
+ /* calculate scale_factor_j and scalefactor_j for joint case */
+ for (ch = 0; ch < 2; ch++) {
+ for (sb = 0; sb < frame->subbands - 1; sb++) {
+ scale_factor_j[ch][sb] = 0;
+ scalefactor_j[ch][sb] = 2;
+ for (blk = 0; blk < frame->blocks; blk++) {
+ while (scalefactor_j[ch][sb] < fabs(sb_sample_j[blk][ch][sb])) {
+ scale_factor_j[ch][sb]++;
+ scalefactor_j[ch][sb] *= 2;
+ }
+ }
+ }
+ }
+
+ /* decide which subbands to join */
+ frame->join = 0;
+ for (sb = 0; sb < frame->subbands - 1; sb++) {
+ if ((scalefactor[0][sb] + scalefactor[1][sb]) >
+ (scalefactor_j[0][sb] + scalefactor_j[1][sb]) ) {
+ /* use joint stereo for this subband */
+ frame->join |= 1 << sb;
+ frame->scale_factor[0][sb] = scale_factor_j[0][sb];
+ frame->scale_factor[1][sb] = scale_factor_j[1][sb];
+ scalefactor[0][sb] = scalefactor_j[0][sb];
+ scalefactor[1][sb] = scalefactor_j[1][sb];
+ for (blk = 0; blk < frame->blocks; blk++) {
+ frame->sb_sample_f[blk][0][sb] = sb_sample_j[blk][0][sb];
+ frame->sb_sample_f[blk][1][sb] = sb_sample_j[blk][1][sb];
+ }
+ }
+ }
+
+ if (len * 8 < produced + frame->subbands)
+ return -1;
+
+ data[4] = 0;
+ for (sb = 0; sb < frame->subbands - 1; sb++) {
+ data[4] |= ((frame->join >> sb) & 0x01) << (7 - sb);
+ }
+ if (frame->subbands == 4) {
+ crc_header[crc_pos / 8] = data[4] & 0xf0;
+ } else {
+ crc_header[crc_pos / 8] = data[4];
+ }
+
+ produced += frame->subbands;
+ crc_pos += frame->subbands;
+ }
+
+ if (len * 8 < produced + (4 * frame->subbands * frame->channels))
+ return -1;
+
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (produced % 8 == 0)
+ data[produced / 8] = 0;
+ data[produced / 8] |= ((frame->scale_factor[ch][sb] & 0x0F) << (4 - (produced % 8)));
+ crc_header[crc_pos / 8] |= ((frame->scale_factor[ch][sb] & 0x0F) << (4 - (crc_pos % 8)));
+
+ produced += 4;
+ crc_pos += 4;
+ }
+ }
+
+ data[3] = sbc_crc8(crc_header, crc_pos);
+
+ sbc_calculate_bits(frame, bits, sf);
+
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ levels[ch][sb] = (1 << bits[ch][sb]) - 1;
+ }
+ }
+
+ for (blk = 0; blk < frame->blocks; blk++) {
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (levels[ch][sb] > 0) {
+ frame->audio_sample[blk][ch][sb] =
+ (uint16_t) ((((frame->sb_sample_f[blk][ch][sb]*levels[ch][sb]) >> (frame->scale_factor[ch][sb] + 1)) +
+ levels[ch][sb]) >> 1);
+ } else {
+ frame->audio_sample[blk][ch][sb] = 0;
+ }
+ }
+ }
+ }
+
+ for (blk = 0; blk < frame->blocks; blk++) {
+ for (ch = 0; ch < frame->channels; ch++) {
+ for (sb = 0; sb < frame->subbands; sb++) {
+ if (bits[ch][sb] != 0) {
+ for (bit = 0; bit < bits[ch][sb]; bit++) {
+ int b; /* A bit */
+ if (produced > len * 8) {
+ return -1;
+ }
+ if (produced % 8 == 0) {
+ data[produced / 8] = 0;
+ }
+ b = ((frame->audio_sample[blk][ch][sb]) >> (bits[ch][sb] - bit -
+ 1)) & 0x01;
+ data[produced / 8] |= b << (7 - (produced % 8));
+ produced++;
+ }
+ }
+ }
+ }
+ }
+
+ if (produced % 8 != 0) {
+ produced += 8 - (produced % 8);
+ }
+
+ return produced / 8;
+}
+
+struct sbc_priv {
+ int init;
+ struct sbc_frame frame;
+ struct sbc_decoder_state dec_state;
+ struct sbc_encoder_state enc_state;
+};
+
+int sbc_init(sbc_t *sbc, unsigned long flags)
+{
+ if (!sbc)
+ return -EIO;
+
+ memset(sbc, 0, sizeof(sbc_t));
+
+ sbc->priv = malloc(sizeof(struct sbc_priv));
+ if (!sbc->priv)
+ return -ENOMEM;
+
+ memset(sbc->priv, 0, sizeof(struct sbc_priv));
+
+ sbc->rate = 44100;
+ sbc->channels = 2;
+ sbc->joint = 0;
+ sbc->subbands = 8;
+ sbc->blocks = 16;
+ sbc->bitpool = 32;
+
+ return 0;
+}
+
+int sbc_decode(sbc_t *sbc, void *data, int count)
+{
+ struct sbc_priv *priv;
+ char *ptr;
+ int i, ch, framelen, samples;
+
+ if (!sbc)
+ return -EIO;
+
+ priv = sbc->priv;
+
+ framelen = sbc_unpack_frame(data, &priv->frame, count);
+
+
+ if (!priv->init) {
+ sbc_decoder_init(&priv->dec_state, &priv->frame);
+ priv->init = 1;
+
+ sbc->rate = priv->frame.sampling_frequency;
+ sbc->channels = priv->frame.channels;
+ sbc->subbands = priv->frame.subbands;
+ sbc->blocks = priv->frame.blocks;
+ sbc->bitpool = priv->frame.bitpool;
+ }
+
+ samples = sbc_synthesize_audio(&priv->dec_state, &priv->frame);
+
+ if (!sbc->data) {
+ sbc->size = samples * priv->frame.channels * 2;
+ sbc->data = malloc(sbc->size);
+ }
+
+ if (sbc->size < samples * priv->frame.channels * 2) {
+ sbc->size = samples * priv->frame.channels * 2;
+ sbc->data = realloc(sbc->data, sbc->size);
+ }
+
+ if (!sbc->data) {
+ sbc->size = 0;
+ return -ENOMEM;
+ }
+
+ ptr = sbc->data;
+
+ for (i = 0; i < samples; i++) {
+ for (ch = 0; ch < priv->frame.channels; ch++) {
+ int16_t s;
+ s = priv->frame.pcm_sample[ch][i];
+ *ptr++ = (s & 0xff00) >> 8;
+ *ptr++ = (s & 0x00ff);
+ }
+ }
+
+ sbc->len = samples * priv->frame.channels * 2;
+
+ return framelen;
+}
+
+int sbc_encode(sbc_t *sbc, void *data, int count)
+{
+ struct sbc_priv *priv;
+ char *ptr;
+ int i, ch, framelen, samples;
+
+ if (!sbc)
+ return -EIO;
+
+ priv = sbc->priv;
+
+ if (!priv->init) {
+ priv->frame.sampling_frequency = sbc->rate;
+ priv->frame.channels = sbc->channels;
+
+ if (sbc->channels > 1) {
+ if (sbc->joint)
+ priv->frame.channel_mode = JOINT_STEREO;
+ else
+ priv->frame.channel_mode = STEREO;
+ } else
+ priv->frame.channel_mode = MONO;
+
+ priv->frame.allocation_method = SNR;
+ priv->frame.subbands = sbc->subbands;
+ priv->frame.blocks = sbc->blocks;
+ priv->frame.bitpool = sbc->bitpool;
+
+ sbc_encoder_init(&priv->enc_state, &priv->frame);
+ priv->init = 1;
+ }
+
+ ptr = data;
+
+ for (i = 0; i < priv->frame.subbands * priv->frame.blocks; i++) {
+ for (ch = 0; ch < sbc->channels; ch++) {
+ int16_t s = (ptr[0] & 0xff) << 8 | (ptr[1] & 0xff);
+ ptr += 2;
+ priv->frame.pcm_sample[ch][i] = s;
+ }
+ }
+
+ samples = sbc_analyze_audio(&priv->enc_state, &priv->frame);
+
+ if (!sbc->data) {
+ sbc->size = 1024;
+ sbc->data = malloc(sbc->size);
+ }
+
+ if (!sbc->data) {
+ sbc->size = 0;
+ return -ENOMEM;
+ }
+
+ framelen = sbc_pack_frame(sbc->data, &priv->frame, sbc->size);
+
+ sbc->len = framelen;
+
+ sbc->duration = (1000000 * priv->frame.subbands * priv->frame.blocks) / sbc->rate;
+
+ return samples * sbc->channels * 2;
+}
+
+void sbc_finish(sbc_t *sbc)
+{
+ if (!sbc)
+ return;
+
+ if (sbc->data)
+ free(sbc->data);
+
+ if (sbc->priv)
+ free(sbc->priv);
+
+ memset(sbc, 0, sizeof(sbc_t));
+}
diff --git a/sbc/sbc.h b/sbc/sbc.h
index ae31af4c..99ccb3e4 100644
--- a/sbc/sbc.h
+++ b/sbc/sbc.h
@@ -2,7 +2,9 @@
*
* Bluetooth low-complexity, subband codec (SBC) library
*
- * Copyright (C) 2004-2007 Marcel Holtmann <marcel@holtmann.org>
+ * Copyright (C) 2004-2006 Marcel Holtmann <marcel@holtmann.org>
+ * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
+ * Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or
@@ -28,6 +30,32 @@
extern "C" {
#endif
+struct sbc_struct {
+ unsigned long flags;
+
+ int rate;
+ int channels;
+ int joint;
+ int blocks;
+ int subbands;
+ int bitpool;
+
+ void *data;
+ int size;
+ int len;
+
+ unsigned long duration;
+
+ void *priv;
+};
+
+typedef struct sbc_struct sbc_t;
+
+int sbc_init(sbc_t *sbc, unsigned long flags);
+int sbc_decode(sbc_t *sbc, void *data, int count);
+int sbc_encode(sbc_t *sbc, void *data, int count);
+void sbc_finish(sbc_t *sbc);
+
#ifdef __cplusplus
}
#endif
diff --git a/sbc/sbc_math.h b/sbc/sbc_math.h
index c427bee3..f6247ef8 100644
--- a/sbc/sbc_math.h
+++ b/sbc/sbc_math.h
@@ -2,7 +2,9 @@
*
* Bluetooth low-complexity, subband codec (SBC) library
*
- * Copyright (C) 2004-2007 Marcel Holtmann <marcel@holtmann.org>
+ * Copyright (C) 2004-2006 Marcel Holtmann <marcel@holtmann.org>
+ * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
+ * Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or
@@ -22,11 +24,12 @@
*/
#define fabs(x) ((x) < 0 ? -(x) : (x))
-
/* C does not provide an explicit arithmetic shift right but this will
always be correct and every compiler *should* generate optimal code */
#define ASR(val, bits) ((-2 >> 1 == -1) ? \
- ((int32_t) (val)) >> (bits) : ((int32_t) (val)) / (1 << (bits)))
+ ((int32_t)(val)) >> (bits) : ((int32_t) (val)) / (1 << (bits)))
+#define ASR_64(val, bits) ((-2 >> 1 == -1) ? \
+ ((long long)(val)) >> (bits) : ((long long) (val)) / (1 << (bits)))
#define SCALE_PROTO4_TBL 15
#define SCALE_ANA4_TBL 16
@@ -37,29 +40,30 @@
#define SCALE_NPROTO4_TBL 10
#define SCALE_NPROTO8_TBL 12
#define SCALE_SAMPLES 14
-#define SCALE4_STAGE1_BITS 16
-#define SCALE4_STAGE2_BITS 18
-#define SCALE4_STAGED1_BITS 15
-#define SCALE4_STAGED2_BITS 15
-#define SCALE8_STAGE1_BITS 16
-#define SCALE8_STAGE2_BITS 18
-#define SCALE8_STAGED1_BITS 15
-#define SCALE8_STAGED2_BITS 15
+#define SCALE4_STAGE1_BITS 10
+#define SCALE4_STAGE2_BITS 21
+#define SCALE4_STAGED1_BITS 18
+#define SCALE4_STAGED2_BITS 23
+#define SCALE8_STAGE1_BITS 8
+#define SCALE8_STAGE2_BITS 24
+#define SCALE8_STAGED1_BITS 18
+#define SCALE8_STAGED2_BITS 23
typedef int32_t sbc_fixed_t;
+typedef long long sbc_extended_t;
-#define SCALE4_STAGE1(src) ASR(src, SCALE4_STAGE1_BITS)
-#define SCALE4_STAGE2(src) ASR(src, SCALE4_STAGE2_BITS)
-#define SCALE4_STAGED1(src) ASR(src, SCALE4_STAGED1_BITS)
-#define SCALE4_STAGED2(src) ASR(src, SCALE4_STAGED2_BITS)
-#define SCALE8_STAGE1(src) ASR(src, SCALE8_STAGE1_BITS)
-#define SCALE8_STAGE2(src) ASR(src, SCALE8_STAGE2_BITS)
-#define SCALE8_STAGED1(src) ASR(src, SCALE8_STAGED1_BITS)
-#define SCALE8_STAGED2(src) ASR(src, SCALE8_STAGED2_BITS)
+#define SCALE4_STAGE1(src) ASR_64(src, SCALE4_STAGE1_BITS)
+#define SCALE4_STAGE2(src) ASR_64(src, SCALE4_STAGE2_BITS)
+#define SCALE4_STAGED1(src) ASR_64(src, SCALE4_STAGED1_BITS)
+#define SCALE4_STAGED2(src) ASR_64(src, SCALE4_STAGED2_BITS)
+#define SCALE8_STAGE1(src) ASR_64(src, SCALE8_STAGE1_BITS)
+#define SCALE8_STAGE2(src) ASR_64(src, SCALE8_STAGE2_BITS)
+#define SCALE8_STAGED1(src) ASR_64(src, SCALE8_STAGED1_BITS)
+#define SCALE8_STAGED2(src) ASR_64(src, SCALE8_STAGED2_BITS)
#define SBC_FIXED_0(val) { val = 0; }
#define ADD(dst, src) { dst += src; }
#define SUB(dst, src) { dst -= src; }
#define MUL(dst, a, b) { dst = (sbc_fixed_t) a * b; }
-#define MULA(dst, a, b) { dst += (sbc_fixed_t) a * b; }
+#define MULA(dst, a, b) { dst += (sbc_extended_t) a * b; }
#define DIV2(dst, src) { dst = ASR(src, 1); }
diff --git a/sbc/sbc_tables.h b/sbc/sbc_tables.h
index a170704d..2712cf23 100644
--- a/sbc/sbc_tables.h
+++ b/sbc/sbc_tables.h
@@ -2,7 +2,9 @@
*
* Bluetooth low-complexity, subband codec (SBC) library
*
- * Copyright (C) 2004-2007 Marcel Holtmann <marcel@holtmann.org>
+ * Copyright (C) 2004-2006 Marcel Holtmann <marcel@holtmann.org>
+ * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
+ * Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or