1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
|
/* GStreamer ReplayGain analysis
*
* Copyright (C) 2006 Rene Stadler <mail@renestadler.de>
* Copyright (C) 2001 David Robinson <David@Robinson.org>
* Glen Sawyer <glensawyer@hotmail.com>
*
* rganalysis.c: Analyze raw audio data in accordance with ReplayGain
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
/* Based on code with Copyright (C) 2001 David Robinson
* <David@Robinson.org> and Glen Sawyer <glensawyer@hotmail.com>,
* which is distributed under the LGPL as part of the vorbisgain
* program. The original code also mentions Frank Klemm
* (http://www.uni-jena.de/~pfk/mpp/) for having contributed lots of
* good code. Specifically, this is based on the file
* "gain_analysis.c" from vorbisgain version 0.34.
*/
/* Room for future improvement: Mono data is currently in fact copied
* to two channels which get processed normally. This means that mono
* input data is processed twice.
*/
/* Helpful information for understanding this code: The two IIR
* filters depend on previous input _and_ previous output samples (up
* to the filter's order number of samples). This explains the whole
* lot of memcpy'ing done in rg_analysis_analyze and why the context
* holds so many buffers.
*/
#include <math.h>
#include <string.h>
#include <glib.h>
#include "rganalysis.h"
#define YULE_ORDER 10
#define BUTTER_ORDER 2
/* Percentile which is louder than the proposed level: */
#define RMS_PERCENTILE 95
/* Duration of RMS window in milliseconds: */
#define RMS_WINDOW_MSECS 50
/* Histogram array elements per dB: */
#define STEPS_PER_DB 100
/* Histogram upper bound in dB (normal max. values in the wild are
* assumed to be around 70, 80 dB): */
#define MAX_DB 120
/* Calibration value: */
#define PINK_REF 64.82 /* 298640883795 */
#define MAX_ORDER MAX (BUTTER_ORDER, YULE_ORDER)
#define MAX_SAMPLE_RATE 48000
/* The + 999 has the effect of ceil()ing: */
#define MAX_SAMPLE_WINDOW (guint) \
((MAX_SAMPLE_RATE * RMS_WINDOW_MSECS + 999) / 1000)
/* Analysis result accumulator. */
struct _RgAnalysisAcc
{
guint32 histogram[STEPS_PER_DB * MAX_DB];
gdouble peak;
};
typedef struct _RgAnalysisAcc RgAnalysisAcc;
/* Analysis context. */
struct _RgAnalysisCtx
{
/* Filter buffers for left channel. */
gfloat inprebuf_l[MAX_ORDER * 2];
gfloat *inpre_l;
gfloat stepbuf_l[MAX_SAMPLE_WINDOW + MAX_ORDER];
gfloat *step_l;
gfloat outbuf_l[MAX_SAMPLE_WINDOW + MAX_ORDER];
gfloat *out_l;
/* Filter buffers for right channel. */
gfloat inprebuf_r[MAX_ORDER * 2];
gfloat *inpre_r;
gfloat stepbuf_r[MAX_SAMPLE_WINDOW + MAX_ORDER];
gfloat *step_r;
gfloat outbuf_r[MAX_SAMPLE_WINDOW + MAX_ORDER];
gfloat *out_r;
/* Number of samples to reach duration of the RMS window: */
guint window_n_samples;
/* Progress of the running window: */
guint window_n_samples_done;
gdouble window_square_sum;
gint sample_rate;
gint sample_rate_index;
RgAnalysisAcc track;
RgAnalysisAcc album;
void (*post_message) (gpointer analysis,
GstClockTime timestamp, GstClockTime duration, gdouble rglevel);
gpointer analysis;
/* The timestamp of the current incoming buffer. */
GstClockTime buffer_timestamp;
/* Number of samples processed in current buffer, during emit_signal,
this will always be on an RMS window boundary. */
guint buffer_n_samples_done;
};
/* Filter coefficients for the IIR filters that form the equal
* loudness filter. XFilter[ctx->sample_rate_index] gives the array
* of the X coefficients (A or B) for the configured sample rate. */
#ifdef _MSC_VER
/* Disable double-to-float warning: */
/* A better solution would be to append 'f' to each constant, but that
* makes the code ugly. */
#pragma warning ( disable : 4305 )
#endif
static const gfloat AYule[9][11] = {
{1., -3.84664617118067, 7.81501653005538, -11.34170355132042,
13.05504219327545, -12.28759895145294, 9.48293806319790,
-5.87257861775999, 2.75465861874613, -0.86984376593551,
0.13919314567432},
{1., -3.47845948550071, 6.36317777566148, -8.54751527471874, 9.47693607801280,
-8.81498681370155, 6.85401540936998, -4.39470996079559,
2.19611684890774, -0.75104302451432, 0.13149317958808},
{1., -2.37898834973084, 2.84868151156327, -2.64577170229825, 2.23697657451713,
-1.67148153367602, 1.00595954808547, -0.45953458054983,
0.16378164858596, -0.05032077717131, 0.02347897407020},
{1., -1.61273165137247, 1.07977492259970, -0.25656257754070,
-0.16276719120440, -0.22638893773906, 0.39120800788284,
-0.22138138954925, 0.04500235387352, 0.02005851806501,
0.00302439095741},
{1., -1.49858979367799, 0.87350271418188, 0.12205022308084, -0.80774944671438,
0.47854794562326, -0.12453458140019, -0.04067510197014,
0.08333755284107, -0.04237348025746, 0.02977207319925},
{1., -0.62820619233671, 0.29661783706366, -0.37256372942400, 0.00213767857124,
-0.42029820170918, 0.22199650564824, 0.00613424350682, 0.06747620744683,
0.05784820375801, 0.03222754072173},
{1., -1.04800335126349, 0.29156311971249, -0.26806001042947, 0.00819999645858,
0.45054734505008, -0.33032403314006, 0.06739368333110,
-0.04784254229033, 0.01639907836189, 0.01807364323573},
{1., -0.51035327095184, -0.31863563325245, -0.20256413484477,
0.14728154134330, 0.38952639978999, -0.23313271880868,
-0.05246019024463, -0.02505961724053, 0.02442357316099,
0.01818801111503},
{1., -0.25049871956020, -0.43193942311114, -0.03424681017675,
-0.04678328784242, 0.26408300200955, 0.15113130533216,
-0.17556493366449, -0.18823009262115, 0.05477720428674,
0.04704409688120}
};
static const gfloat BYule[9][11] = {
{0.03857599435200, -0.02160367184185, -0.00123395316851, -0.00009291677959,
-0.01655260341619, 0.02161526843274, -0.02074045215285,
0.00594298065125, 0.00306428023191, 0.00012025322027, 0.00288463683916},
{0.05418656406430, -0.02911007808948, -0.00848709379851, -0.00851165645469,
-0.00834990904936, 0.02245293253339, -0.02596338512915,
0.01624864962975, -0.00240879051584, 0.00674613682247,
-0.00187763777362},
{0.15457299681924, -0.09331049056315, -0.06247880153653, 0.02163541888798,
-0.05588393329856, 0.04781476674921, 0.00222312597743, 0.03174092540049,
-0.01390589421898, 0.00651420667831, -0.00881362733839},
{0.30296907319327, -0.22613988682123, -0.08587323730772, 0.03282930172664,
-0.00915702933434, -0.02364141202522, -0.00584456039913,
0.06276101321749, -0.00000828086748, 0.00205861885564,
-0.02950134983287},
{0.33642304856132, -0.25572241425570, -0.11828570177555, 0.11921148675203,
-0.07834489609479, -0.00469977914380, -0.00589500224440,
0.05724228140351, 0.00832043980773, -0.01635381384540,
-0.01760176568150},
{0.44915256608450, -0.14351757464547, -0.22784394429749, -0.01419140100551,
0.04078262797139, -0.12398163381748, 0.04097565135648, 0.10478503600251,
-0.01863887810927, -0.03193428438915, 0.00541907748707},
{0.56619470757641, -0.75464456939302, 0.16242137742230, 0.16744243493672,
-0.18901604199609, 0.30931782841830, -0.27562961986224,
0.00647310677246, 0.08647503780351, -0.03788984554840,
-0.00588215443421},
{0.58100494960553, -0.53174909058578, -0.14289799034253, 0.17520704835522,
0.02377945217615, 0.15558449135573, -0.25344790059353, 0.01628462406333,
0.06920467763959, -0.03721611395801, -0.00749618797172},
{0.53648789255105, -0.42163034350696, -0.00275953611929, 0.04267842219415,
-0.10214864179676, 0.14590772289388, -0.02459864859345,
-0.11202315195388, -0.04060034127000, 0.04788665548180,
-0.02217936801134}
};
static const gfloat AButter[9][3] = {
{1., -1.97223372919527, 0.97261396931306},
{1., -1.96977855582618, 0.97022847566350},
{1., -1.95835380975398, 0.95920349965459},
{1., -1.95002759149878, 0.95124613669835},
{1., -1.94561023566527, 0.94705070426118},
{1., -1.92783286977036, 0.93034775234268},
{1., -1.91858953033784, 0.92177618768381},
{1., -1.91542108074780, 0.91885558323625},
{1., -1.88903307939452, 0.89487434461664}
};
static const gfloat BButter[9][3] = {
{0.98621192462708, -1.97242384925416, 0.98621192462708},
{0.98500175787242, -1.97000351574484, 0.98500175787242},
{0.97938932735214, -1.95877865470428, 0.97938932735214},
{0.97531843204928, -1.95063686409857, 0.97531843204928},
{0.97316523498161, -1.94633046996323, 0.97316523498161},
{0.96454515552826, -1.92909031105652, 0.96454515552826},
{0.96009142950541, -1.92018285901082, 0.96009142950541},
{0.95856916599601, -1.91713833199203, 0.95856916599601},
{0.94597685600279, -1.89195371200558, 0.94597685600279}
};
#ifdef _MSC_VER
#pragma warning ( default : 4305 )
#endif
/* Filter functions. These access elements with negative indices of
* the input and output arrays (up to the filter's order). */
/* For much better performance, the function below has been
* implemented by unrolling the inner loop for our two use cases. */
/*
* static inline void
* apply_filter (const gfloat * input, gfloat * output, guint n_samples,
* const gfloat * a, const gfloat * b, guint order)
* {
* gfloat y;
* gint i, k;
*
* for (i = 0; i < n_samples; i++) {
* y = input[i] * b[0];
* for (k = 1; k <= order; k++)
* y += input[i - k] * b[k] - output[i - k] * a[k];
* output[i] = y;
* }
* }
*/
static inline void
yule_filter (const gfloat * input, gfloat * output,
const gfloat * a, const gfloat * b)
{
/* 1e-10 is added below to avoid running into denormals when operating on
* near silence. */
output[0] = 1e-10 + input[0] * b[0]
+ input[-1] * b[1] - output[-1] * a[1]
+ input[-2] * b[2] - output[-2] * a[2]
+ input[-3] * b[3] - output[-3] * a[3]
+ input[-4] * b[4] - output[-4] * a[4]
+ input[-5] * b[5] - output[-5] * a[5]
+ input[-6] * b[6] - output[-6] * a[6]
+ input[-7] * b[7] - output[-7] * a[7]
+ input[-8] * b[8] - output[-8] * a[8]
+ input[-9] * b[9] - output[-9] * a[9]
+ input[-10] * b[10] - output[-10] * a[10];
}
static inline void
butter_filter (const gfloat * input, gfloat * output,
const gfloat * a, const gfloat * b)
{
output[0] = input[0] * b[0]
+ input[-1] * b[1] - output[-1] * a[1]
+ input[-2] * b[2] - output[-2] * a[2];
}
/* Because butter_filter and yule_filter are inlined, this function is
* a bit blown-up (code-size wise), but not inlining gives a ca. 40%
* performance penalty. */
static inline void
apply_filters (const RgAnalysisCtx * ctx, const gfloat * input_l,
const gfloat * input_r, guint n_samples)
{
const gfloat *ayule = AYule[ctx->sample_rate_index];
const gfloat *byule = BYule[ctx->sample_rate_index];
const gfloat *abutter = AButter[ctx->sample_rate_index];
const gfloat *bbutter = BButter[ctx->sample_rate_index];
gint pos = ctx->window_n_samples_done;
gint i;
for (i = 0; i < n_samples; i++, pos++) {
yule_filter (input_l + i, ctx->step_l + pos, ayule, byule);
butter_filter (ctx->step_l + pos, ctx->out_l + pos, abutter, bbutter);
yule_filter (input_r + i, ctx->step_r + pos, ayule, byule);
butter_filter (ctx->step_r + pos, ctx->out_r + pos, abutter, bbutter);
}
}
/* Clear filter buffer state and current RMS window. */
static void
reset_filters (RgAnalysisCtx * ctx)
{
gint i;
for (i = 0; i < MAX_ORDER; i++) {
ctx->inprebuf_l[i] = 0.;
ctx->stepbuf_l[i] = 0.;
ctx->outbuf_l[i] = 0.;
ctx->inprebuf_r[i] = 0.;
ctx->stepbuf_r[i] = 0.;
ctx->outbuf_r[i] = 0.;
}
ctx->window_square_sum = 0.;
ctx->window_n_samples_done = 0;
}
/* Accumulator functions. */
/* Add two accumulators in-place. The sum is defined as the result of
* the vector sum of the histogram array and the maximum value of the
* peak field. Thus "adding" the accumulators for all tracks yields
* the correct result for obtaining the album gain and peak. */
static void
accumulator_add (RgAnalysisAcc * acc, const RgAnalysisAcc * acc_other)
{
gint i;
for (i = 0; i < G_N_ELEMENTS (acc->histogram); i++)
acc->histogram[i] += acc_other->histogram[i];
acc->peak = MAX (acc->peak, acc_other->peak);
}
/* Reset an accumulator to zero. */
static void
accumulator_clear (RgAnalysisAcc * acc)
{
memset (acc->histogram, 0, sizeof (acc->histogram));
acc->peak = 0.;
}
/* Obtain final analysis result from an accumulator. Returns TRUE on
* success, FALSE on error (if accumulator is still zero). */
static gboolean
accumulator_result (const RgAnalysisAcc * acc, gdouble * result_gain,
gdouble * result_peak)
{
guint32 sum = 0;
guint32 upper;
guint i;
for (i = 0; i < G_N_ELEMENTS (acc->histogram); i++)
sum += acc->histogram[i];
if (sum == 0)
/* All entries are 0: We got less than 50ms of data. */
return FALSE;
upper = (guint32) ceil (sum * (1. - (gdouble) (RMS_PERCENTILE / 100.)));
for (i = G_N_ELEMENTS (acc->histogram); i--;) {
if (upper <= acc->histogram[i])
break;
upper -= acc->histogram[i];
}
if (result_peak != NULL)
*result_peak = acc->peak;
if (result_gain != NULL)
*result_gain = PINK_REF - (gdouble) i / STEPS_PER_DB;
return TRUE;
}
/* Functions that operate on contexts, for external usage. */
/* Create a new context. Before it can be used, a sample rate must be
* configured using rg_analysis_set_sample_rate. */
RgAnalysisCtx *
rg_analysis_new (void)
{
RgAnalysisCtx *ctx;
ctx = g_new (RgAnalysisCtx, 1);
ctx->inpre_l = ctx->inprebuf_l + MAX_ORDER;
ctx->step_l = ctx->stepbuf_l + MAX_ORDER;
ctx->out_l = ctx->outbuf_l + MAX_ORDER;
ctx->inpre_r = ctx->inprebuf_r + MAX_ORDER;
ctx->step_r = ctx->stepbuf_r + MAX_ORDER;
ctx->out_r = ctx->outbuf_r + MAX_ORDER;
ctx->sample_rate = 0;
accumulator_clear (&ctx->track);
accumulator_clear (&ctx->album);
return ctx;
}
static void
reset_silence_detection (RgAnalysisCtx * ctx)
{
ctx->buffer_timestamp = GST_CLOCK_TIME_NONE;
ctx->buffer_n_samples_done = 0;
}
/* Adapt to given sample rate. Does nothing if already the current
* rate (returns TRUE then). Returns FALSE only if given sample rate
* is not supported. If the configured rate changes, the last
* unprocessed incomplete 50ms chunk of data is dropped because the
* filters are reset. */
gboolean
rg_analysis_set_sample_rate (RgAnalysisCtx * ctx, gint sample_rate)
{
g_return_val_if_fail (ctx != NULL, FALSE);
if (ctx->sample_rate == sample_rate)
return TRUE;
switch (sample_rate) {
case 48000:
ctx->sample_rate_index = 0;
break;
case 44100:
ctx->sample_rate_index = 1;
break;
case 32000:
ctx->sample_rate_index = 2;
break;
case 24000:
ctx->sample_rate_index = 3;
break;
case 22050:
ctx->sample_rate_index = 4;
break;
case 16000:
ctx->sample_rate_index = 5;
break;
case 12000:
ctx->sample_rate_index = 6;
break;
case 11025:
ctx->sample_rate_index = 7;
break;
case 8000:
ctx->sample_rate_index = 8;
break;
default:
return FALSE;
}
ctx->sample_rate = sample_rate;
/* The + 999 has the effect of ceil()ing: */
ctx->window_n_samples = (guint) ((sample_rate * RMS_WINDOW_MSECS + 999)
/ 1000);
reset_filters (ctx);
reset_silence_detection (ctx);
return TRUE;
}
void
rg_analysis_init_silence_detection (RgAnalysisCtx * ctx,
void (*post_message) (gpointer analysis, GstClockTime timestamp,
GstClockTime duration, gdouble rglevel), gpointer analysis)
{
ctx->post_message = post_message;
ctx->analysis = analysis;
reset_silence_detection (ctx);
}
void
rg_analysis_start_buffer (RgAnalysisCtx * ctx, GstClockTime buffer_timestamp)
{
ctx->buffer_timestamp = buffer_timestamp;
ctx->buffer_n_samples_done = 0;
}
void
rg_analysis_destroy (RgAnalysisCtx * ctx)
{
g_free (ctx);
}
/* Entry points for analyzing sample data in common raw data formats.
* The stereo format functions expect interleaved frames. It is
* possible to pass data in different formats for the same context,
* there are no restrictions. All functions have the same signature;
* the depth argument for the float functions is not variable and must
* be given the value 32. */
void
rg_analysis_analyze_mono_float (RgAnalysisCtx * ctx, gconstpointer data,
gsize size, guint depth)
{
gfloat conv_samples[512];
const gfloat *samples = (gfloat *) data;
guint n_samples = size / sizeof (gfloat);
gint i;
g_return_if_fail (depth == 32);
g_return_if_fail (size % sizeof (gfloat) == 0);
while (n_samples) {
gint n = MIN (n_samples, G_N_ELEMENTS (conv_samples));
n_samples -= n;
memcpy (conv_samples, samples, n * sizeof (gfloat));
for (i = 0; i < n; i++) {
ctx->track.peak = MAX (ctx->track.peak, fabs (conv_samples[i]));
conv_samples[i] *= 32768.;
}
samples += n;
rg_analysis_analyze (ctx, conv_samples, NULL, n);
}
}
void
rg_analysis_analyze_stereo_float (RgAnalysisCtx * ctx, gconstpointer data,
gsize size, guint depth)
{
gfloat conv_samples_l[256];
gfloat conv_samples_r[256];
const gfloat *samples = (gfloat *) data;
guint n_frames = size / (sizeof (gfloat) * 2);
gint i;
g_return_if_fail (depth == 32);
g_return_if_fail (size % (sizeof (gfloat) * 2) == 0);
while (n_frames) {
gint n = MIN (n_frames, G_N_ELEMENTS (conv_samples_l));
n_frames -= n;
for (i = 0; i < n; i++) {
gfloat old_sample;
old_sample = samples[2 * i];
ctx->track.peak = MAX (ctx->track.peak, fabs (old_sample));
conv_samples_l[i] = old_sample * 32768.;
old_sample = samples[2 * i + 1];
ctx->track.peak = MAX (ctx->track.peak, fabs (old_sample));
conv_samples_r[i] = old_sample * 32768.;
}
samples += 2 * n;
rg_analysis_analyze (ctx, conv_samples_l, conv_samples_r, n);
}
}
void
rg_analysis_analyze_mono_int16 (RgAnalysisCtx * ctx, gconstpointer data,
gsize size, guint depth)
{
gfloat conv_samples[512];
gint32 peak_sample = 0;
const gint16 *samples = (gint16 *) data;
guint n_samples = size / sizeof (gint16);
gint shift = sizeof (gint16) * 8 - depth;
gint i;
g_return_if_fail (depth <= (sizeof (gint16) * 8));
g_return_if_fail (size % sizeof (gint16) == 0);
while (n_samples) {
gint n = MIN (n_samples, G_N_ELEMENTS (conv_samples));
n_samples -= n;
for (i = 0; i < n; i++) {
gint16 old_sample = samples[i] << shift;
peak_sample = MAX (peak_sample, ABS ((gint32) old_sample));
conv_samples[i] = (gfloat) old_sample;
}
samples += n;
rg_analysis_analyze (ctx, conv_samples, NULL, n);
}
ctx->track.peak = MAX (ctx->track.peak,
(gdouble) peak_sample / ((gdouble) (1u << 15)));
}
void
rg_analysis_analyze_stereo_int16 (RgAnalysisCtx * ctx, gconstpointer data,
gsize size, guint depth)
{
gfloat conv_samples_l[256];
gfloat conv_samples_r[256];
gint32 peak_sample = 0;
const gint16 *samples = (gint16 *) data;
guint n_frames = size / (sizeof (gint16) * 2);
gint shift = sizeof (gint16) * 8 - depth;
gint i;
g_return_if_fail (depth <= (sizeof (gint16) * 8));
g_return_if_fail (size % (sizeof (gint16) * 2) == 0);
while (n_frames) {
gint n = MIN (n_frames, G_N_ELEMENTS (conv_samples_l));
n_frames -= n;
for (i = 0; i < n; i++) {
gint16 old_sample;
old_sample = samples[2 * i] << shift;
peak_sample = MAX (peak_sample, ABS ((gint32) old_sample));
conv_samples_l[i] = (gfloat) old_sample;
old_sample = samples[2 * i + 1] << shift;
peak_sample = MAX (peak_sample, ABS ((gint32) old_sample));
conv_samples_r[i] = (gfloat) old_sample;
}
samples += 2 * n;
rg_analysis_analyze (ctx, conv_samples_l, conv_samples_r, n);
}
ctx->track.peak = MAX (ctx->track.peak,
(gdouble) peak_sample / ((gdouble) (1u << 15)));
}
/* Analyze the given chunk of samples. The sample data is given in
* floating point format but should be scaled such that the values
* +/-32768.0 correspond to the -0dBFS reference amplitude.
*
* samples_l: Buffer with sample data for the left channel or of the
* mono channel.
*
* samples_r: Buffer with sample data for the right channel or NULL
* for mono.
*
* n_samples: Number of samples passed in each buffer.
*/
void
rg_analysis_analyze (RgAnalysisCtx * ctx, const gfloat * samples_l,
const gfloat * samples_r, guint n_samples)
{
const gfloat *input_l, *input_r;
guint n_samples_done;
gint i;
g_return_if_fail (ctx != NULL);
g_return_if_fail (samples_l != NULL);
g_return_if_fail (ctx->sample_rate != 0);
if (n_samples == 0)
return;
if (samples_r == NULL)
/* Mono. */
samples_r = samples_l;
memcpy (ctx->inpre_l, samples_l,
MIN (n_samples, MAX_ORDER) * sizeof (gfloat));
memcpy (ctx->inpre_r, samples_r,
MIN (n_samples, MAX_ORDER) * sizeof (gfloat));
n_samples_done = 0;
while (n_samples_done < n_samples) {
/* Limit number of samples to be processed in this iteration to
* the number needed to complete the next window: */
guint n_samples_current = MIN (n_samples - n_samples_done,
ctx->window_n_samples - ctx->window_n_samples_done);
if (n_samples_done < MAX_ORDER) {
input_l = ctx->inpre_l + n_samples_done;
input_r = ctx->inpre_r + n_samples_done;
n_samples_current = MIN (n_samples_current, MAX_ORDER - n_samples_done);
} else {
input_l = samples_l + n_samples_done;
input_r = samples_r + n_samples_done;
}
apply_filters (ctx, input_l, input_r, n_samples_current);
/* Update the square sum. */
for (i = 0; i < n_samples_current; i++)
ctx->window_square_sum += ctx->out_l[ctx->window_n_samples_done + i]
* ctx->out_l[ctx->window_n_samples_done + i]
+ ctx->out_r[ctx->window_n_samples_done + i]
* ctx->out_r[ctx->window_n_samples_done + i];
ctx->window_n_samples_done += n_samples_current;
ctx->buffer_n_samples_done += n_samples_current;
g_return_if_fail (ctx->window_n_samples_done <= ctx->window_n_samples);
if (ctx->window_n_samples_done == ctx->window_n_samples) {
/* Get the Root Mean Square (RMS) for this set of samples. */
gdouble val = STEPS_PER_DB * 10. * log10 (ctx->window_square_sum /
ctx->window_n_samples * 0.5 + 1.e-37);
gint ival = CLAMP ((gint) val, 0,
(gint) G_N_ELEMENTS (ctx->track.histogram) - 1);
/* Compute the per-window gain */
const gdouble gain = PINK_REF - (gdouble) ival / STEPS_PER_DB;
const GstClockTime timestamp = (ctx->buffer_timestamp
+ ctx->buffer_n_samples_done * GST_SECOND / ctx->sample_rate
- RMS_WINDOW_MSECS * GST_MSECOND);
ctx->post_message (ctx->analysis, timestamp,
RMS_WINDOW_MSECS * GST_MSECOND, -gain);
ctx->track.histogram[ival]++;
ctx->window_square_sum = 0.;
ctx->window_n_samples_done = 0;
/* No need for memmove here, the areas never overlap: Even for
* the smallest sample rate, the number of samples needed for
* the window is greater than MAX_ORDER. */
memcpy (ctx->stepbuf_l, ctx->stepbuf_l + ctx->window_n_samples,
MAX_ORDER * sizeof (gfloat));
memcpy (ctx->outbuf_l, ctx->outbuf_l + ctx->window_n_samples,
MAX_ORDER * sizeof (gfloat));
memcpy (ctx->stepbuf_r, ctx->stepbuf_r + ctx->window_n_samples,
MAX_ORDER * sizeof (gfloat));
memcpy (ctx->outbuf_r, ctx->outbuf_r + ctx->window_n_samples,
MAX_ORDER * sizeof (gfloat));
}
n_samples_done += n_samples_current;
}
if (n_samples >= MAX_ORDER) {
memcpy (ctx->inprebuf_l, samples_l + n_samples - MAX_ORDER,
MAX_ORDER * sizeof (gfloat));
memcpy (ctx->inprebuf_r, samples_r + n_samples - MAX_ORDER,
MAX_ORDER * sizeof (gfloat));
} else {
memmove (ctx->inprebuf_l, ctx->inprebuf_l + n_samples,
(MAX_ORDER - n_samples) * sizeof (gfloat));
memcpy (ctx->inprebuf_l + MAX_ORDER - n_samples, samples_l,
n_samples * sizeof (gfloat));
memmove (ctx->inprebuf_r, ctx->inprebuf_r + n_samples,
(MAX_ORDER - n_samples) * sizeof (gfloat));
memcpy (ctx->inprebuf_r + MAX_ORDER - n_samples, samples_r,
n_samples * sizeof (gfloat));
}
}
/* Obtain track gain and peak. Returns TRUE on success. Can fail if
* not enough samples have been processed. Updates album accumulator.
* Resets track accumulator. */
gboolean
rg_analysis_track_result (RgAnalysisCtx * ctx, gdouble * gain, gdouble * peak)
{
gboolean result;
g_return_val_if_fail (ctx != NULL, FALSE);
accumulator_add (&ctx->album, &ctx->track);
result = accumulator_result (&ctx->track, gain, peak);
accumulator_clear (&ctx->track);
reset_filters (ctx);
reset_silence_detection (ctx);
return result;
}
/* Obtain album gain and peak. Returns TRUE on success. Can fail if
* not enough samples have been processed. Resets album
* accumulator. */
gboolean
rg_analysis_album_result (RgAnalysisCtx * ctx, gdouble * gain, gdouble * peak)
{
gboolean result;
g_return_val_if_fail (ctx != NULL, FALSE);
result = accumulator_result (&ctx->album, gain, peak);
accumulator_clear (&ctx->album);
return result;
}
void
rg_analysis_reset_album (RgAnalysisCtx * ctx)
{
accumulator_clear (&ctx->album);
}
/* Reset internal buffers as well as track and album accumulators.
* Configured sample rate is kept intact. */
void
rg_analysis_reset (RgAnalysisCtx * ctx)
{
g_return_if_fail (ctx != NULL);
reset_filters (ctx);
accumulator_clear (&ctx->track);
accumulator_clear (&ctx->album);
reset_silence_detection (ctx);
}
|