summaryrefslogtreecommitdiffstats
path: root/src/modules/bluetooth/sbc_primitives.c
diff options
context:
space:
mode:
authorLuiz Augusto von Dentz <luiz.dentz-von@nokia.com>2011-03-14 14:46:10 -0300
committerLuiz Augusto von Dentz <luiz.dentz-von@nokia.com>2011-03-14 14:52:52 -0300
commite4eb4670108ad2b4a0d9c3044e12ed0d933f834e (patch)
tree6b8f4005d9fa2c4a4b37423f914c984530d00658 /src/modules/bluetooth/sbc_primitives.c
parentad8562452768520dd70659cf4be686608b557961 (diff)
build: move sbc related files to its own directory
This should make it easier to apply patches from BlueZ which also uses sbc subdir for this files.
Diffstat (limited to 'src/modules/bluetooth/sbc_primitives.c')
-rw-r--r--src/modules/bluetooth/sbc_primitives.c470
1 files changed, 0 insertions, 470 deletions
diff --git a/src/modules/bluetooth/sbc_primitives.c b/src/modules/bluetooth/sbc_primitives.c
deleted file mode 100644
index 6b0be3f5..00000000
--- a/src/modules/bluetooth/sbc_primitives.c
+++ /dev/null
@@ -1,470 +0,0 @@
-/*
- *
- * Bluetooth low-complexity, subband codec (SBC) library
- *
- * Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org>
- * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
- * Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
- *
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- */
-
-#include <stdint.h>
-#include <limits.h>
-#include <string.h>
-#include "sbc.h"
-#include "sbc_math.h"
-#include "sbc_tables.h"
-
-#include "sbc_primitives.h"
-#include "sbc_primitives_mmx.h"
-#include "sbc_primitives_neon.h"
-
-/*
- * A reference C code of analysis filter with SIMD-friendly tables
- * reordering and code layout. This code can be used to develop platform
- * specific SIMD optimizations. Also it may be used as some kind of test
- * for compiler autovectorization capabilities (who knows, if the compiler
- * is very good at this stuff, hand optimized assembly may be not strictly
- * needed for some platform).
- *
- * Note: It is also possible to make a simple variant of analysis filter,
- * which needs only a single constants table without taking care about
- * even/odd cases. This simple variant of filter can be implemented without
- * input data permutation. The only thing that would be lost is the
- * possibility to use pairwise SIMD multiplications. But for some simple
- * CPU cores without SIMD extensions it can be useful. If anybody is
- * interested in implementing such variant of a filter, sourcecode from
- * bluez versions 4.26/4.27 can be used as a reference and the history of
- * the changes in git repository done around that time may be worth checking.
- */
-
-static inline void sbc_analyze_four_simd(const int16_t *in, int32_t *out,
- const FIXED_T *consts)
-{
- FIXED_A t1[4];
- FIXED_T t2[4];
- int hop = 0;
-
- /* rounding coefficient */
- t1[0] = t1[1] = t1[2] = t1[3] =
- (FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1);
-
- /* low pass polyphase filter */
- for (hop = 0; hop < 40; hop += 8) {
- t1[0] += (FIXED_A) in[hop] * consts[hop];
- t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
- t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
- t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
- t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
- t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
- t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
- t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
- }
-
- /* scaling */
- t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE;
- t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE;
- t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE;
- t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE;
-
- /* do the cos transform */
- t1[0] = (FIXED_A) t2[0] * consts[40 + 0];
- t1[0] += (FIXED_A) t2[1] * consts[40 + 1];
- t1[1] = (FIXED_A) t2[0] * consts[40 + 2];
- t1[1] += (FIXED_A) t2[1] * consts[40 + 3];
- t1[2] = (FIXED_A) t2[0] * consts[40 + 4];
- t1[2] += (FIXED_A) t2[1] * consts[40 + 5];
- t1[3] = (FIXED_A) t2[0] * consts[40 + 6];
- t1[3] += (FIXED_A) t2[1] * consts[40 + 7];
-
- t1[0] += (FIXED_A) t2[2] * consts[40 + 8];
- t1[0] += (FIXED_A) t2[3] * consts[40 + 9];
- t1[1] += (FIXED_A) t2[2] * consts[40 + 10];
- t1[1] += (FIXED_A) t2[3] * consts[40 + 11];
- t1[2] += (FIXED_A) t2[2] * consts[40 + 12];
- t1[2] += (FIXED_A) t2[3] * consts[40 + 13];
- t1[3] += (FIXED_A) t2[2] * consts[40 + 14];
- t1[3] += (FIXED_A) t2[3] * consts[40 + 15];
-
- out[0] = t1[0] >>
- (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
- out[1] = t1[1] >>
- (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
- out[2] = t1[2] >>
- (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
- out[3] = t1[3] >>
- (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
-}
-
-static inline void sbc_analyze_eight_simd(const int16_t *in, int32_t *out,
- const FIXED_T *consts)
-{
- FIXED_A t1[8];
- FIXED_T t2[8];
- int i, hop;
-
- /* rounding coefficient */
- t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] =
- (FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1);
-
- /* low pass polyphase filter */
- for (hop = 0; hop < 80; hop += 16) {
- t1[0] += (FIXED_A) in[hop] * consts[hop];
- t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
- t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
- t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
- t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
- t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
- t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
- t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
- t1[4] += (FIXED_A) in[hop + 8] * consts[hop + 8];
- t1[4] += (FIXED_A) in[hop + 9] * consts[hop + 9];
- t1[5] += (FIXED_A) in[hop + 10] * consts[hop + 10];
- t1[5] += (FIXED_A) in[hop + 11] * consts[hop + 11];
- t1[6] += (FIXED_A) in[hop + 12] * consts[hop + 12];
- t1[6] += (FIXED_A) in[hop + 13] * consts[hop + 13];
- t1[7] += (FIXED_A) in[hop + 14] * consts[hop + 14];
- t1[7] += (FIXED_A) in[hop + 15] * consts[hop + 15];
- }
-
- /* scaling */
- t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE;
- t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE;
- t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE;
- t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE;
- t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE;
- t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE;
- t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE;
- t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE;
-
-
- /* do the cos transform */
- t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = 0;
-
- for (i = 0; i < 4; i++) {
- t1[0] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 0];
- t1[0] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 1];
- t1[1] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 2];
- t1[1] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 3];
- t1[2] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 4];
- t1[2] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 5];
- t1[3] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 6];
- t1[3] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 7];
- t1[4] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 8];
- t1[4] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 9];
- t1[5] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 10];
- t1[5] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 11];
- t1[6] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 12];
- t1[6] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 13];
- t1[7] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 14];
- t1[7] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 15];
- }
-
- for (i = 0; i < 8; i++)
- out[i] = t1[i] >>
- (SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS);
-}
-
-static inline void sbc_analyze_4b_4s_simd(int16_t *x,
- int32_t *out, int out_stride)
-{
- /* Analyze blocks */
- sbc_analyze_four_simd(x + 12, out, analysis_consts_fixed4_simd_odd);
- out += out_stride;
- sbc_analyze_four_simd(x + 8, out, analysis_consts_fixed4_simd_even);
- out += out_stride;
- sbc_analyze_four_simd(x + 4, out, analysis_consts_fixed4_simd_odd);
- out += out_stride;
- sbc_analyze_four_simd(x + 0, out, analysis_consts_fixed4_simd_even);
-}
-
-static inline void sbc_analyze_4b_8s_simd(int16_t *x,
- int32_t *out, int out_stride)
-{
- /* Analyze blocks */
- sbc_analyze_eight_simd(x + 24, out, analysis_consts_fixed8_simd_odd);
- out += out_stride;
- sbc_analyze_eight_simd(x + 16, out, analysis_consts_fixed8_simd_even);
- out += out_stride;
- sbc_analyze_eight_simd(x + 8, out, analysis_consts_fixed8_simd_odd);
- out += out_stride;
- sbc_analyze_eight_simd(x + 0, out, analysis_consts_fixed8_simd_even);
-}
-
-static inline int16_t unaligned16_be(const uint8_t *ptr)
-{
- return (int16_t) ((ptr[0] << 8) | ptr[1]);
-}
-
-static inline int16_t unaligned16_le(const uint8_t *ptr)
-{
- return (int16_t) (ptr[0] | (ptr[1] << 8));
-}
-
-/*
- * Internal helper functions for input data processing. In order to get
- * optimal performance, it is important to have "nsamples", "nchannels"
- * and "big_endian" arguments used with this inline function as compile
- * time constants.
- */
-
-static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s4_internal(
- int position,
- const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
- int nsamples, int nchannels, int big_endian)
-{
- /* handle X buffer wraparound */
- if (position < nsamples) {
- if (nchannels > 0)
- memcpy(&X[0][SBC_X_BUFFER_SIZE - 36], &X[0][position],
- 36 * sizeof(int16_t));
- if (nchannels > 1)
- memcpy(&X[1][SBC_X_BUFFER_SIZE - 36], &X[1][position],
- 36 * sizeof(int16_t));
- position = SBC_X_BUFFER_SIZE - 36;
- }
-
- #define PCM(i) (big_endian ? \
- unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
-
- /* copy/permutate audio samples */
- while ((nsamples -= 8) >= 0) {
- position -= 8;
- if (nchannels > 0) {
- int16_t *x = &X[0][position];
- x[0] = PCM(0 + 7 * nchannels);
- x[1] = PCM(0 + 3 * nchannels);
- x[2] = PCM(0 + 6 * nchannels);
- x[3] = PCM(0 + 4 * nchannels);
- x[4] = PCM(0 + 0 * nchannels);
- x[5] = PCM(0 + 2 * nchannels);
- x[6] = PCM(0 + 1 * nchannels);
- x[7] = PCM(0 + 5 * nchannels);
- }
- if (nchannels > 1) {
- int16_t *x = &X[1][position];
- x[0] = PCM(1 + 7 * nchannels);
- x[1] = PCM(1 + 3 * nchannels);
- x[2] = PCM(1 + 6 * nchannels);
- x[3] = PCM(1 + 4 * nchannels);
- x[4] = PCM(1 + 0 * nchannels);
- x[5] = PCM(1 + 2 * nchannels);
- x[6] = PCM(1 + 1 * nchannels);
- x[7] = PCM(1 + 5 * nchannels);
- }
- pcm += 16 * nchannels;
- }
- #undef PCM
-
- return position;
-}
-
-static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s8_internal(
- int position,
- const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
- int nsamples, int nchannels, int big_endian)
-{
- /* handle X buffer wraparound */
- if (position < nsamples) {
- if (nchannels > 0)
- memcpy(&X[0][SBC_X_BUFFER_SIZE - 72], &X[0][position],
- 72 * sizeof(int16_t));
- if (nchannels > 1)
- memcpy(&X[1][SBC_X_BUFFER_SIZE - 72], &X[1][position],
- 72 * sizeof(int16_t));
- position = SBC_X_BUFFER_SIZE - 72;
- }
-
- #define PCM(i) (big_endian ? \
- unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
-
- /* copy/permutate audio samples */
- while ((nsamples -= 16) >= 0) {
- position -= 16;
- if (nchannels > 0) {
- int16_t *x = &X[0][position];
- x[0] = PCM(0 + 15 * nchannels);
- x[1] = PCM(0 + 7 * nchannels);
- x[2] = PCM(0 + 14 * nchannels);
- x[3] = PCM(0 + 8 * nchannels);
- x[4] = PCM(0 + 13 * nchannels);
- x[5] = PCM(0 + 9 * nchannels);
- x[6] = PCM(0 + 12 * nchannels);
- x[7] = PCM(0 + 10 * nchannels);
- x[8] = PCM(0 + 11 * nchannels);
- x[9] = PCM(0 + 3 * nchannels);
- x[10] = PCM(0 + 6 * nchannels);
- x[11] = PCM(0 + 0 * nchannels);
- x[12] = PCM(0 + 5 * nchannels);
- x[13] = PCM(0 + 1 * nchannels);
- x[14] = PCM(0 + 4 * nchannels);
- x[15] = PCM(0 + 2 * nchannels);
- }
- if (nchannels > 1) {
- int16_t *x = &X[1][position];
- x[0] = PCM(1 + 15 * nchannels);
- x[1] = PCM(1 + 7 * nchannels);
- x[2] = PCM(1 + 14 * nchannels);
- x[3] = PCM(1 + 8 * nchannels);
- x[4] = PCM(1 + 13 * nchannels);
- x[5] = PCM(1 + 9 * nchannels);
- x[6] = PCM(1 + 12 * nchannels);
- x[7] = PCM(1 + 10 * nchannels);
- x[8] = PCM(1 + 11 * nchannels);
- x[9] = PCM(1 + 3 * nchannels);
- x[10] = PCM(1 + 6 * nchannels);
- x[11] = PCM(1 + 0 * nchannels);
- x[12] = PCM(1 + 5 * nchannels);
- x[13] = PCM(1 + 1 * nchannels);
- x[14] = PCM(1 + 4 * nchannels);
- x[15] = PCM(1 + 2 * nchannels);
- }
- pcm += 32 * nchannels;
- }
- #undef PCM
-
- return position;
-}
-
-/*
- * Input data processing functions. The data is endian converted if needed,
- * channels are deintrleaved and audio samples are reordered for use in
- * SIMD-friendly analysis filter function. The results are put into "X"
- * array, getting appended to the previous data (or it is better to say
- * prepended, as the buffer is filled from top to bottom). Old data is
- * discarded when neededed, but availability of (10 * nrof_subbands)
- * contiguous samples is always guaranteed for the input to the analysis
- * filter. This is achieved by copying a sufficient part of old data
- * to the top of the buffer on buffer wraparound.
- */
-
-static int sbc_enc_process_input_4s_le(int position,
- const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
- int nsamples, int nchannels)
-{
- if (nchannels > 1)
- return sbc_encoder_process_input_s4_internal(
- position, pcm, X, nsamples, 2, 0);
- else
- return sbc_encoder_process_input_s4_internal(
- position, pcm, X, nsamples, 1, 0);
-}
-
-static int sbc_enc_process_input_4s_be(int position,
- const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
- int nsamples, int nchannels)
-{
- if (nchannels > 1)
- return sbc_encoder_process_input_s4_internal(
- position, pcm, X, nsamples, 2, 1);
- else
- return sbc_encoder_process_input_s4_internal(
- position, pcm, X, nsamples, 1, 1);
-}
-
-static int sbc_enc_process_input_8s_le(int position,
- const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
- int nsamples, int nchannels)
-{
- if (nchannels > 1)
- return sbc_encoder_process_input_s8_internal(
- position, pcm, X, nsamples, 2, 0);
- else
- return sbc_encoder_process_input_s8_internal(
- position, pcm, X, nsamples, 1, 0);
-}
-
-static int sbc_enc_process_input_8s_be(int position,
- const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
- int nsamples, int nchannels)
-{
- if (nchannels > 1)
- return sbc_encoder_process_input_s8_internal(
- position, pcm, X, nsamples, 2, 1);
- else
- return sbc_encoder_process_input_s8_internal(
- position, pcm, X, nsamples, 1, 1);
-}
-
-/* Supplementary function to count the number of leading zeros */
-
-static inline int sbc_clz(uint32_t x)
-{
-#ifdef __GNUC__
- return __builtin_clz(x);
-#else
- /* TODO: this should be replaced with something better if good
- * performance is wanted when using compilers other than gcc */
- int cnt = 0;
- while (x) {
- cnt++;
- x >>= 1;
- }
- return 32 - cnt;
-#endif
-}
-
-static void sbc_calc_scalefactors(
- int32_t sb_sample_f[16][2][8],
- uint32_t scale_factor[2][8],
- int blocks, int channels, int subbands)
-{
- int ch, sb, blk;
- for (ch = 0; ch < channels; ch++) {
- for (sb = 0; sb < subbands; sb++) {
- uint32_t x = 1 << SCALE_OUT_BITS;
- for (blk = 0; blk < blocks; blk++) {
- int32_t tmp = fabs(sb_sample_f[blk][ch][sb]);
- if (tmp != 0)
- x |= tmp - 1;
- }
- scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) -
- sbc_clz(x);
- }
- }
-}
-
-/*
- * Detect CPU features and setup function pointers
- */
-void sbc_init_primitives(struct sbc_encoder_state *state)
-{
- /* Default implementation for analyze functions */
- state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_simd;
- state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_simd;
-
- /* Default implementation for input reordering / deinterleaving */
- state->sbc_enc_process_input_4s_le = sbc_enc_process_input_4s_le;
- state->sbc_enc_process_input_4s_be = sbc_enc_process_input_4s_be;
- state->sbc_enc_process_input_8s_le = sbc_enc_process_input_8s_le;
- state->sbc_enc_process_input_8s_be = sbc_enc_process_input_8s_be;
-
- /* Default implementation for scale factors calculation */
- state->sbc_calc_scalefactors = sbc_calc_scalefactors;
- state->implementation_info = "Generic C";
-
- /* X86/AMD64 optimizations */
-#ifdef SBC_BUILD_WITH_MMX_SUPPORT
- sbc_init_primitives_mmx(state);
-#endif
-
- /* ARM optimizations */
-#ifdef SBC_BUILD_WITH_NEON_SUPPORT
- sbc_init_primitives_neon(state);
-#endif
-}