summaryrefslogtreecommitdiffstats
path: root/src/modules/module-equalizer-sink.c
diff options
context:
space:
mode:
authorJason Newton <jason@arcuid.wyred.org>2009-06-22 00:36:14 -0700
committerJason Newton <nevion@gmail.com>2009-09-29 23:50:52 -0700
commit431555030ead3aabad83028f359849314e95065e (patch)
tree3a0f475387b314ded3968fc42e9fb217c3ca8ce7 /src/modules/module-equalizer-sink.c
parentafd1b6d355ef1a41cb3592485855e273a5de69c1 (diff)
module-equalizer-sink added
src/Makefile.am: added module-equalizer-sink
Diffstat (limited to 'src/modules/module-equalizer-sink.c')
-rwxr-xr-xsrc/modules/module-equalizer-sink.c850
1 files changed, 850 insertions, 0 deletions
diff --git a/src/modules/module-equalizer-sink.c b/src/modules/module-equalizer-sink.c
new file mode 100755
index 00000000..8b34fa0d
--- /dev/null
+++ b/src/modules/module-equalizer-sink.c
@@ -0,0 +1,850 @@
+
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include <stdio.h>
+#include <math.h>
+#include <fftw3.h>
+#include <float.h>
+
+
+#include <pulse/xmalloc.h>
+#include <pulse/i18n.h>
+
+#include <pulsecore/core-error.h>
+#include <pulsecore/namereg.h>
+#include <pulsecore/sink.h>
+#include <pulsecore/module.h>
+#include <pulsecore/core-util.h>
+#include <pulsecore/modargs.h>
+#include <pulsecore/log.h>
+#include <pulsecore/thread.h>
+#include <pulsecore/thread-mq.h>
+#include <pulsecore/rtpoll.h>
+#include <pulsecore/sample-util.h>
+#include <pulsecore/ltdl-helper.h>
+#include <liboil/liboilfuncs.h>
+#include <liboil/liboil.h>
+
+
+#include <stdint.h>
+#include <time.h>
+
+
+#include "module-equalizer-sink-symdef.h"
+
+PA_MODULE_AUTHOR("Jason Newton");
+PA_MODULE_DESCRIPTION(_("General Purpose Equalizer"));
+PA_MODULE_VERSION(PACKAGE_VERSION);
+PA_MODULE_LOAD_ONCE(FALSE);
+PA_MODULE_USAGE(_("sink=<sink to connect to> "));
+
+#define MEMBLOCKQ_MAXLENGTH (16*1024*1024)
+
+struct userdata {
+ pa_core *core;
+ pa_module *module;
+ pa_sink *sink, *master;
+ pa_sink_input *sink_input;
+
+ size_t channels;
+ size_t fft_size; //length (res) of fft
+ size_t window_size;//even!
+ size_t overlap_size;
+ size_t samples_gathered;
+ size_t n_buffered_output;
+ size_t max_output;
+ float *H;//frequency response filter (magnitude based)
+ float *W;//windowing function (time domain)
+ float *work_buffer,**input,**overlap_accum,**output_buffer;
+ fftwf_complex *output_window;
+ fftwf_plan forward_plan,inverse_plan;
+
+ pa_memblockq *memblockq;
+};
+
+static const char* const valid_modargs[] = {
+ "sink_name",
+ "sink_properties",
+ "master",
+ "format",
+ "rate",
+ "channels",
+ "channel_map",
+ NULL
+};
+
+uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p)
+{
+ return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) -
+ ((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec);
+}
+
+void hanning_normalized_window(float *W,size_t window_size){
+ //h = sqrt(2)/2 * (1+cos(t*pi)) ./ sqrt( 1+cos(t*pi).^2 )
+ float c;
+ for(size_t i=0;i<window_size;++i){
+ c=cos(M_PI*i/(window_size-1));
+ W[i]=sqrt(2.0)/2.0*(1.0+c) / sqrt(1.0+c*c);
+ }
+}
+void hanning_window(float *W,size_t window_size){
+ //h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2
+ for(size_t i=0;i<window_size;++i){
+ W[i]=.5*(1-cos(2*M_PI*i/(window_size+1)));
+ }
+}
+void hamming_window(float *W,size_t window_size){
+ //h=.54-.46*cos(2*pi*j/(window_size-1))
+ //COLA for R=(M-1)/2,(M-1)/4 etc when endpoints are divided by 2
+ //or one endpoint is zeroed
+ float m;
+ for(size_t i=0;i<window_size;++i){
+ m=i;
+ m/=(window_size-1);
+ W[i]=.54-.46*cos(2*M_PI*m);
+ }
+ W[0]/=2;
+ W[window_size-1]/=2;
+}
+void blackman_window(float *W,size_t window_size){
+ //h=.42-.5*cos(2*pi*m)+.08*cos(4*pi*m), m=(0:W-1)/(W-1)
+ //COLA for R=(M-1)/3 when M is odd and R is an integer
+ //R=M/3 when M is even and R is an integer
+ float m;
+ for(size_t i=0;i<window_size;++i){
+ m=i;
+ m/=(window_size-1);
+ W[i]=.42-.5*cos(2*M_PI*m)+.08*cos(4*M_PI*m);
+ }
+}
+
+
+void sin_window(float *W,size_t window_size){
+ //h = (cos(t*pi)+1)/2 .* float(abs(t)<1);
+ for(size_t i=0;i<window_size;++i){
+ W[i]=sin(M_PI*i/(window_size-1));
+ }
+}
+
+
+void array_out(const char *name,float *a,size_t length){
+ FILE *p=fopen(name,"w");
+ for(size_t i=0;i<length;++i){
+ fprintf(p,"%e,",a[i]);
+ //if(i%1000==0){
+ // fprintf(p,"\n");
+ //}
+ }
+ fprintf(p,"\n");
+ fclose(p);
+}
+
+
+/* Called from I/O thread context */
+static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
+ struct userdata *u = PA_SINK(o)->userdata;
+
+ switch (code) {
+
+ case PA_SINK_MESSAGE_GET_LATENCY: {
+ pa_usec_t usec = 0;
+ pa_sample_spec *ss=&u->sink->sample_spec;
+
+ /* Get the latency of the master sink */
+ if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0)
+ usec = 0;
+
+ usec+=pa_bytes_to_usec(u->n_buffered_output*pa_frame_size(ss),ss);
+ /* Add the latency internal to our sink input on top */
+ usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec);
+ *((pa_usec_t*) data) = usec;
+ return 0;
+ }
+ }
+
+ return pa_sink_process_msg(o, code, data, offset, chunk);
+}
+
+
+/* Called from main context */
+static int sink_set_state(pa_sink *s, pa_sink_state_t state) {
+ struct userdata *u;
+
+ pa_sink_assert_ref(s);
+ pa_assert_se(u = s->userdata);
+
+ if (PA_SINK_IS_LINKED(state) &&
+ u->sink_input &&
+ PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
+
+ pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED);
+
+ return 0;
+}
+
+/* Called from I/O thread context */
+static void sink_request_rewind(pa_sink *s) {
+ struct userdata *u;
+
+ pa_sink_assert_ref(s);
+ pa_assert_se(u = s->userdata);
+
+ /* Just hand this one over to the master sink */
+ pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->memblockq), TRUE, FALSE, FALSE);
+}
+
+/* Called from I/O thread context */
+static void sink_update_requested_latency(pa_sink *s) {
+ struct userdata *u;
+
+ pa_sink_assert_ref(s);
+ pa_assert_se(u = s->userdata);
+
+ /* Just hand this one over to the master sink */
+ pa_sink_input_set_requested_latency_within_thread(
+ u->sink_input,
+ pa_sink_get_requested_latency_within_thread(s));
+}
+
+/* Called from I/O thread context */
+static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
+ struct userdata *u;
+ float *src, *dst;
+ size_t c;
+ pa_memchunk tchunk;
+ pa_sink_input_assert_ref(i);
+ pa_assert(chunk);
+ pa_assert_se(u = i->userdata);
+ size_t fs = pa_frame_size(&u->sink->sample_spec);
+ size_t ss=pa_sample_size(&u->sink->sample_spec);
+ size_t fe = fs/ss;
+
+ if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
+ return -1;
+
+ //output any buffered outputs first
+ if(u->n_buffered_output>0){
+ //pa_log("outputing %ld buffered samples",u->n_buffered_output);
+ chunk->index = 0;
+ size_t n_outputable=PA_MIN(u->n_buffered_output,nbytes/fs);
+ chunk->length = n_outputable*fs;
+ chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
+ pa_memblockq_drop(u->memblockq, chunk->length);
+ dst = (float*) pa_memblock_acquire(chunk->memblock);
+ for(size_t j=0;j<u->channels;++j){
+ pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+j, fs, u->output_buffer[j], sizeof(float),n_outputable);
+ memmove(u->output_buffer[j],u->output_buffer[j]+n_outputable,(u->n_buffered_output-n_outputable)*sizeof(float));
+ }
+ u->n_buffered_output-=n_outputable;
+ pa_memblock_release(chunk->memblock);
+ return 0;
+ }
+ pa_assert_se(u->n_buffered_output==0);
+
+ //collect the minimum number of samples
+ while(u->samples_gathered < (u->window_size-u->overlap_size)){
+ //render some new fragments to our memblockq
+ //size_t desired_samples=PA_MIN(u->min_input-samples_gathered,u->max_output);
+ size_t desired_samples=PA_MIN((u->window_size-u->overlap_size)-u->samples_gathered,u->max_output);
+ while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) {
+ pa_memchunk nchunk;
+
+ pa_sink_render(u->sink, desired_samples*fs, &nchunk);
+ pa_memblockq_push(u->memblockq, &nchunk);
+ pa_memblock_unref(nchunk.memblock);
+ }
+ if(tchunk.length/fs!=desired_samples){
+ pa_log("got %ld samples, asked for %ld",tchunk.length/fs,desired_samples);
+ }
+ size_t n_samples=PA_MIN(tchunk.length/fs,u->window_size-u->overlap_size-u->samples_gathered);
+ //TODO: figure out what to do with rest of the samples when there's too many (rare?)
+ src = (float*) ((uint8_t*) pa_memblock_acquire(tchunk.memblock) + tchunk.index);
+ for (size_t c=0;c<u->channels;c++) {
+ pa_sample_clamp(PA_SAMPLE_FLOAT32NE,u->input[c]+u->overlap_size+u->samples_gathered,sizeof(float), src+c, fs, n_samples);
+ }
+
+ u->samples_gathered+=n_samples;
+ pa_memblock_release(tchunk.memblock);
+ pa_memblock_unref(tchunk.memblock);
+ }
+ //IT should be this guy if we're buffering like how its supposed to
+ //size_t n_outputable=PA_MIN(u->window_size-u->overlap_size,nbytes/fs);
+ //This one takes into account the actual data gathered but then the dsp
+ //stuff is wrong when the buffer "underruns"
+ size_t n_outputable=PA_MIN(u->samples_gathered,nbytes/fs);
+ /*
+ //debugging: tests if immediate release of freshly buffered data
+ //plays ok and prevents any other processing
+ chunk->index=0;
+ chunk->length=n_outputable*fs;
+ chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
+ pa_memblockq_drop(u->memblockq, chunk->length);
+ dst = (float*) pa_memblock_acquire(chunk->memblock);;
+ for (size_t c=0;c<u->channels;c++) {
+ pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c, fs, u->input[c]+u->overlap_size, sizeof(float),n_outputable);
+ }
+ u->samples_gathered=0;
+ pa_memblock_release(chunk->memblock);
+ return 0;
+ */
+
+ //pa_log("%ld dequed samples",u->samples_gathered);
+
+ chunk->index=0;
+ chunk->length=n_outputable*fs;
+ chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
+ pa_memblockq_drop(u->memblockq, chunk->length);
+ dst = (float*) pa_memblock_acquire(chunk->memblock);
+ //pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input, sizeof(float), src+c, fs, samples);
+ //pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c,fs, u->input, sizeof(float), samples);
+
+ /*
+ struct timespec start, end;
+ uint64_t elapsed;
+ clock_gettime(CLOCK_MONOTONIC, &start);
+ */
+ //use a zero-phase sliding dft and overlap-add method
+
+ pa_assert_se(u->fft_size>=u->window_size);
+ //pa_assert_se(u->window_size%2==0);
+ pa_assert_se(u->overlap_size<u->window_size);
+ pa_assert_se(u->samples_gathered>=u->window_size-u->overlap_size);
+ size_t sample_rem=u->window_size-u->overlap_size-n_outputable;
+ //size_t w_mid=u->window_size/2;
+ //pa_log("hello world a");
+ for (c=0;c<u->channels;c++) {
+ //center the data for zero phase
+ //zero-pad TODO: optimization if sure these zeros aren't overwritten
+ //memset(u->work_buffer+w_mid,0,(u->fft_size-u->window_size)*sizeof(float));
+ //memset(u->work_buffer,0,u->fft_size*sizeof(float));
+ /*
+ for(size_t j=0;j<u->window_size;++j){
+ u->work_buffer[j]=u->W[j]*u->input[c][j];
+ u->work_buffer[j]=u->input[c][j];
+ }
+ */
+ //zero padd the data, don't worry about zerophase, shouldn't really matter
+ memset(u->work_buffer+u->overlap_size,0,(u->fft_size-u->overlap_size)*sizeof(float));
+ //window the data
+ for(size_t j=0;j<u->window_size;++j){
+ u->work_buffer[j]=u->W[j]*u->input[c][j];
+ }
+ /*
+ //recenter for zero phase
+ for(size_t j=0;j<w_mid;++j){
+ float tmp=u->work_buffer[j];
+ u->work_buffer[j]=u->input[c][j+w_mid];
+ u->work_buffer[j+u->fft_size-w_mid]=tmp;
+ }
+ */
+ //pa_log("hello world b");
+
+ /*
+ //window and zero phase shift
+ for(size_t j=0;j<w_mid;++j){
+ //u->work_buffer[j]=u->input[c][j+w_mid];
+ //u->work_buffer[j+u->fft_size-w_mid]=u->input[c][j];
+ u->work_buffer[j]=u->W[j+w_mid]*u->input[c][j+w_mid];
+ u->work_buffer[j+u->fft_size-w_mid]=u->W[j]*u->input[c][j];
+ }*/
+ //Processing is done here!
+ //do fft
+ fftwf_execute_dft_r2c(u->forward_plan,u->work_buffer,u->output_window);
+ //perform filtering
+ for(size_t j=0;j<u->fft_size/2+1;++j){
+ ////identity transform (fft size)
+ //u->output_window[j][0]/=u->fft_size;
+ //u->output_window[j][1]/=u->fft_size;
+ ////identity transform (window size)
+ //u->output_window[j][0]/=u->window_size;
+ //u->output_window[j][1]/=u->window_size;
+ //filtered
+ u->output_window[j][0]*=u->H[j];
+ u->output_window[j][1]*=u->H[j];
+ }
+ //inverse fft
+ fftwf_execute_dft_c2r(u->inverse_plan,u->output_window,u->work_buffer);
+
+ /*
+ //uncenter the data
+ for(size_t j=0;j<w_mid;++j){
+ const float tmp=u->work_buffer[j];
+ u->work_buffer[j]=u->work_buffer[j+u->fft_size-w_mid];
+ u->work_buffer[j+w_mid]=tmp;
+ }
+ */
+ /*
+ //divide out fft gain (more stable here?)
+ for(size_t j=0;j<u->window_size;++j){
+ u->work_buffer[j]/=u->fft_size;
+ }
+ */
+ /*
+ //debug: tests overlaping add
+ //and negates ALL PREVIOUS processing
+ //yields a perfect reconstruction if COLA is held
+ for(size_t j=0;j<u->window_size;++j){
+ u->work_buffer[j]=u->W[j]*u->input[c][j];
+ }
+ */
+ /*
+ //debug: tests if basic buffering works
+ //shouldn't modify the signal AT ALL
+ for(size_t j=0;j<u->window_size;++j){
+ u->work_buffer[j]=u->input[c][j];
+ }
+ */
+
+ /*
+ //overlap add and preserve overlap component from this window (zero phase)
+ for(size_t j=0;j<u->overlap_size;++j){
+ u->work_buffer[j]+=u->overlap_accum[c][j];
+ u->overlap_accum[c][j]=u->work_buffer[u->window_size-u->overlap_size+j];
+ }
+ */
+ //overlap add and preserve overlap component from this window (linear phase)
+ for(size_t j=0;j<u->overlap_size;++j){
+ u->work_buffer[j]+=u->overlap_accum[c][j];
+ u->overlap_accum[c][j]=u->work_buffer[u->window_size-u->overlap_size+j];
+ }
+
+ //preseve the needed input for the next windows overlap
+ memmove(u->input[c],u->input[c]+u->overlap_size,(u->window_size-u->overlap_size)*sizeof(float));
+ //output the samples that are outputable now
+ pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c, fs, u->work_buffer, sizeof(float),n_outputable);
+ //buffer the rest of them
+ memcpy(u->output_buffer[c]+u->n_buffered_output,u->work_buffer+n_outputable,sample_rem*sizeof(float));
+ }
+ /*
+ clock_gettime(CLOCK_MONOTONIC, &end);
+ elapsed=time_diff(&end, &start);
+ pa_log("processed: %ld, time: %ld",u->samples_gathered,elapsed);
+ */
+ u->n_buffered_output+=sample_rem;
+ u->samples_gathered=0;
+
+
+ //pa_log("%ld samples queued",u->n_buffered_output);
+
+ pa_memblock_release(chunk->memblock);
+
+
+ return 0;
+}
+
+/* Called from I/O thread context */
+static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
+ struct userdata *u;
+ size_t amount = 0;
+
+ pa_sink_input_assert_ref(i);
+ pa_assert_se(u = i->userdata);
+
+ if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
+ return;
+
+ if (u->sink->thread_info.rewind_nbytes > 0) {
+ size_t max_rewrite;
+
+ max_rewrite = nbytes + pa_memblockq_get_length(u->memblockq);
+ amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite);
+ u->sink->thread_info.rewind_nbytes = 0;
+
+ if (amount > 0) {
+ pa_memblockq_seek(u->memblockq, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
+ pa_log_debug("Resetting equalizer");
+ }
+ }
+
+ pa_sink_process_rewind(u->sink, amount);
+ pa_memblockq_rewind(u->memblockq, nbytes);
+}
+
+/* Called from I/O thread context */
+static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
+ struct userdata *u;
+
+ pa_sink_input_assert_ref(i);
+ pa_assert_se(u = i->userdata);
+
+ if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
+ return;
+
+ pa_memblockq_set_maxrewind(u->memblockq, nbytes);
+ pa_sink_set_max_rewind_within_thread(u->sink, nbytes);
+}
+
+/* Called from I/O thread context */
+static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
+ struct userdata *u;
+
+ pa_sink_input_assert_ref(i);
+ pa_assert_se(u = i->userdata);
+
+ if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
+ return;
+
+ pa_sink_set_max_request_within_thread(u->sink, nbytes);
+}
+
+/* Called from I/O thread context */
+static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
+ struct userdata *u;
+
+ pa_sink_input_assert_ref(i);
+ pa_assert_se(u = i->userdata);
+
+ if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
+ return;
+
+ pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
+}
+
+/* Called from I/O thread context */
+static void sink_input_detach_cb(pa_sink_input *i) {
+ struct userdata *u;
+
+ pa_sink_input_assert_ref(i);
+ pa_assert_se(u = i->userdata);
+
+ if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
+ return;
+
+ pa_sink_detach_within_thread(u->sink);
+ pa_sink_set_asyncmsgq(u->sink, NULL);
+ pa_sink_set_rtpoll(u->sink, NULL);
+}
+
+/* Called from I/O thread context */
+static void sink_input_attach_cb(pa_sink_input *i) {
+ struct userdata *u;
+
+ pa_sink_input_assert_ref(i);
+ pa_assert_se(u = i->userdata);
+
+ if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
+ return;
+
+ pa_sink_set_asyncmsgq(u->sink, i->sink->asyncmsgq);
+ pa_sink_set_rtpoll(u->sink, i->sink->rtpoll);
+ pa_sink_attach_within_thread(u->sink);
+
+ pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->master->thread_info.max_latency);
+}
+
+/* Called from main context */
+static void sink_input_kill_cb(pa_sink_input *i) {
+ struct userdata *u;
+
+ pa_sink_input_assert_ref(i);
+ pa_assert_se(u = i->userdata);
+
+ pa_sink_unlink(u->sink);
+ pa_sink_input_unlink(u->sink_input);
+
+ pa_sink_unref(u->sink);
+ u->sink = NULL;
+ pa_sink_input_unref(u->sink_input);
+ u->sink_input = NULL;
+
+ pa_module_unload_request(u->module, TRUE);
+}
+
+/* Called from IO thread context */
+static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
+ struct userdata *u;
+
+ pa_sink_input_assert_ref(i);
+ pa_assert_se(u = i->userdata);
+
+ /* If we are added for the first time, ask for a rewinding so that
+ * we are heard right-away. */
+ if (PA_SINK_INPUT_IS_LINKED(state) &&
+ i->thread_info.state == PA_SINK_INPUT_INIT) {
+ pa_log_debug("Requesting rewind due to state change.");
+ pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE);
+ }
+}
+
+/* Called from main context */
+static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
+ struct userdata *u;
+
+ pa_sink_input_assert_ref(i);
+ pa_assert_se(u = i->userdata);
+
+ return u->sink != dest;
+}
+
+int pa__init(pa_module*m) {
+ struct userdata *u;
+ pa_sample_spec ss;
+ pa_channel_map map;
+ pa_modargs *ma;
+ const char *z;
+ pa_sink *master;
+ pa_sink_input_new_data sink_input_data;
+ pa_sink_new_data sink_data;
+ pa_bool_t *use_default = NULL;
+ size_t fs;
+
+ pa_assert(m);
+
+ if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
+ pa_log("Failed to parse module arguments.");
+ goto fail;
+ }
+
+ if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) {
+ pa_log("Master sink not found");
+ goto fail;
+ }
+
+ ss = master->sample_spec;
+ ss.format = PA_SAMPLE_FLOAT32;
+ map = master->channel_map;
+ if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
+ pa_log("Invalid sample format specification or channel map");
+ goto fail;
+ }
+ fs=pa_frame_size(&ss);
+
+ u = pa_xnew0(struct userdata, 1);
+ u->core = m->core;
+ u->module = m;
+ m->userdata = u;
+ u->master = master;
+ u->sink = NULL;
+ u->sink_input = NULL;
+ u->memblockq = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH, 0, fs, 1, 1, 0, NULL);
+
+ //u->fft_size=44100;
+ //u->fft_size=48000;
+ //u->fft_size=1024;
+ u->channels=ss.channels;
+ u->fft_size=pow(2,ceil(log(ss.rate)/log(2)));
+ //u->fft_size=ss.rate;
+ //u->fft_size=65536;
+ pa_log("fft size: %ld",u->fft_size);
+ u->window_size=8001;
+ u->overlap_size=(u->window_size+1)/2;
+ //u->overlap_size=u->window_size/2;
+ //u->overlap_size=0;
+ u->samples_gathered=0;
+ u->n_buffered_output=0;
+ u->max_output=pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss);
+ u->H=(float*) fftwf_malloc((u->fft_size/2+1)*sizeof(float));
+ u->W=(float*) fftwf_malloc((u->window_size)*sizeof(float));
+ u->work_buffer=(float*) fftwf_malloc(u->fft_size*sizeof(float));
+ u->input=(float **)malloc(sizeof(float *)*u->channels);
+ u->overlap_accum=(float **)malloc(sizeof(float *)*u->channels);
+ u->output_buffer=(float **)malloc(sizeof(float *)*u->channels);
+ for(size_t c=0;c<u->channels;++c){
+ u->input[c]=(float*) fftwf_malloc(u->window_size*sizeof(float));
+ memset(u->input[c],0,u->window_size*sizeof(float));
+ u->overlap_accum[c]=(float*) fftwf_malloc(u->overlap_size*sizeof(float));
+ memset(u->overlap_accum[c],0,u->overlap_size*sizeof(float));
+ u->output_buffer[c]=(float*) fftwf_malloc(u->window_size*sizeof(float));
+ }
+ u->output_window = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * (u->fft_size/2+1));
+ u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_ESTIMATE);
+ u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE);
+
+ /*
+ //rectangular window
+ for(size_t j=0;j<u->window_size;++j){
+ u->W[j]=1.0;
+ }
+ */
+ //hanning_normalized_window(u->W,u->window_size);
+ hanning_window(u->W,u->window_size);
+ //sin_window(u->W,u->window_size);
+ array_out("/home/jason/window.txt",u->W,u->window_size);
+ //u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->input, u->output_window, FFTW_ESTIMATE);
+ //u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE);
+ //u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->input, u->output, FFTW_MEASURE);
+ //u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output, u->input, FFTW_MEASURE);
+ const int freqs[]={0,25,50,100,200,300,400,800,1500,
+ 2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,
+ 13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX};
+ const float coefficients[]={1,1,1,1,1,1,1,1,1,1,
+ 1,1,1,1,1,1,1,1,
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};
+ const size_t ncoefficients=sizeof(coefficients)/sizeof(float);
+ pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float));
+ float *freq_translated=(float *) malloc(sizeof(float)*(ncoefficients));
+ freq_translated[0]=1;
+ //Translate the frequencies in their natural sampling rate to the new sampling rate frequencies
+ for(size_t i=1;i<ncoefficients-1;++i){
+ freq_translated[i]=((float)freqs[i]*u->fft_size)/ss.rate;
+ //pa_log("i: %ld: %d , %g",i,freqs[i],freq_translated[i]);
+ pa_assert_se(freq_translated[i]>=freq_translated[i-1]);
+ }
+ freq_translated[ncoefficients-1]=DBL_MAX;
+ //Interpolate the specified frequency band values
+ u->H[0]=1;
+ for(size_t i=1,j=0;i<(u->fft_size/2+1);++i){
+ pa_assert_se(j<ncoefficients);
+ //max frequency range passed, consider the rest as one band
+ if(freq_translated[j+1]>=DBL_MAX){
+ for(;i<(u->fft_size/2+1);++i){
+ u->H[i]=coefficients[j];
+ }
+ break;
+ }
+ //pa_log("i: %d, j: %d, freq: %f",i,j,freq_translated[j]);
+ //pa_log("interp: %0.4f %0.4f",freq_translated[j],freq_translated[j+1]);
+ pa_assert_se(freq_translated[j]<freq_translated[j+1]);
+ pa_assert_se(i>=freq_translated[j]);
+ pa_assert_se(i<=freq_translated[j+1]);
+ //bilinear-inerpolation of coefficients specified
+ float c0=(i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]);
+ pa_assert_se(c0>=0&&c0<=1.0);
+ u->H[i]=((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]);
+ pa_assert_se(u->H[i]>0);
+ while(i>=floor(freq_translated[j+1])){
+ j++;
+ }
+ }
+ array_out("/home/jason/coffs.txt",u->H,u->fft_size/2+1);
+ //divide out the fft gain
+ for(int i=0;i<(u->fft_size/2+1);++i){
+ u->H[i]/=u->fft_size;
+ }
+ free(freq_translated);
+
+ /* Create sink */
+ pa_sink_new_data_init(&sink_data);
+ sink_data.driver = __FILE__;
+ sink_data.module = m;
+ if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
+ sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name);
+ sink_data.namereg_fail = FALSE;
+ pa_sink_new_data_set_sample_spec(&sink_data, &ss);
+ pa_sink_new_data_set_channel_map(&sink_data, &map);
+ z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
+ pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer");
+ pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
+ pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
+
+ if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
+ pa_log("Invalid properties");
+ pa_sink_new_data_done(&sink_data);
+ goto fail;
+ }
+
+ u->sink = pa_sink_new(m->core, &sink_data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY);
+ pa_sink_new_data_done(&sink_data);
+
+ if (!u->sink) {
+ pa_log("Failed to create sink.");
+ goto fail;
+ }
+
+ u->sink->parent.process_msg = sink_process_msg;
+ u->sink->set_state = sink_set_state;
+ u->sink->update_requested_latency = sink_update_requested_latency;
+ u->sink->request_rewind = sink_request_rewind;
+ u->sink->userdata = u;
+
+ pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
+ pa_sink_set_rtpoll(u->sink, master->rtpoll);
+
+ /* Create sink input */
+ pa_sink_input_new_data_init(&sink_input_data);
+ sink_input_data.driver = __FILE__;
+ sink_input_data.module = m;
+ sink_input_data.sink = u->master;
+ pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream");
+ pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
+ pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
+ pa_sink_input_new_data_set_channel_map(&sink_input_data, &map);
+
+ pa_sink_input_new(&u->sink_input, m->core, &sink_input_data, PA_SINK_INPUT_DONT_MOVE);
+ pa_sink_input_new_data_done(&sink_input_data);
+
+ if (!u->sink_input)
+ goto fail;
+
+ u->sink_input->pop = sink_input_pop_cb;
+ u->sink_input->process_rewind = sink_input_process_rewind_cb;
+ u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
+ u->sink_input->update_max_request = sink_input_update_max_request_cb;
+ u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
+ u->sink_input->kill = sink_input_kill_cb;
+ u->sink_input->attach = sink_input_attach_cb;
+ u->sink_input->detach = sink_input_detach_cb;
+ u->sink_input->state_change = sink_input_state_change_cb;
+ u->sink_input->may_move_to = sink_input_may_move_to_cb;
+ u->sink_input->userdata = u;
+
+ pa_sink_put(u->sink);
+ pa_sink_input_put(u->sink_input);
+
+ pa_modargs_free(ma);
+
+ pa_xfree(use_default);
+
+ return 0;
+
+fail:
+ if (ma)
+ pa_modargs_free(ma);
+
+ pa_xfree(use_default);
+
+ pa__done(m);
+
+ return -1;
+}
+
+int pa__get_n_used(pa_module *m) {
+ struct userdata *u;
+
+ pa_assert(m);
+ pa_assert_se(u = m->userdata);
+
+ return pa_sink_linked_by(u->sink);
+}
+
+void pa__done(pa_module*m) {
+ struct userdata *u;
+
+ pa_assert(m);
+
+ if (!(u = m->userdata))
+ return;
+
+ if (u->sink) {
+ pa_sink_unlink(u->sink);
+ pa_sink_unref(u->sink);
+ }
+
+ if (u->sink_input) {
+ pa_sink_input_unlink(u->sink_input);
+ pa_sink_input_unref(u->sink_input);
+ }
+
+ if (u->memblockq)
+ pa_memblockq_free(u->memblockq);
+
+ fftwf_destroy_plan(u->inverse_plan);
+ fftwf_destroy_plan(u->forward_plan);
+ fftwf_free(u->output_window);
+ for(size_t c=0;c<u->channels;++c){
+ fftwf_free(u->output_buffer[c]);
+ fftwf_free(u->overlap_accum[c]);
+ fftwf_free(u->input[c]);
+ }
+ free(u->output_buffer);
+ free(u->overlap_accum);
+ free(u->input);
+ fftwf_free(u->work_buffer);
+ fftwf_free(u->W);
+ fftwf_free(u->H);
+
+ pa_xfree(u);
+}